Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,182 +6,70 @@ from groq.types.chat.chat_completion_tool_param import ChatCompletionToolParam
|
|
6 |
|
7 |
# Use the fine-tuned maritime legal model
|
8 |
MODEL = "nomiChroma3.1"
|
9 |
-
client = Groq(api_key=os.environ["GROQ_API_KEY"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
# Define your tools if needed (e.g., legal research, document retrieval)
|
12 |
-
def legal_tool_function(arguments):
|
13 |
-
# Implement specific legal functions here
|
14 |
-
# Placeholder for legal research or similar functionality
|
15 |
-
return {"result": "Legal tool function response here"}
|
16 |
-
|
17 |
-
# Define your tools
|
18 |
-
legal_tool: ChatCompletionToolParam = {
|
19 |
-
"type": "function",
|
20 |
-
"function": {
|
21 |
-
"name": "legal_tool_function",
|
22 |
-
"description": "Legal assistant tool: use this for various maritime legal tasks.",
|
23 |
-
"parameters": {
|
24 |
-
"type": "object",
|
25 |
-
"properties": {
|
26 |
-
"arguments": {
|
27 |
-
"type": "string",
|
28 |
-
"description": "Arguments for the legal function.",
|
29 |
-
},
|
30 |
-
},
|
31 |
-
"required": ["arguments"],
|
32 |
-
},
|
33 |
-
},
|
34 |
-
}
|
35 |
-
|
36 |
-
tools = [legal_tool]
|
37 |
-
|
38 |
-
def call_function(tool_call, available_functions):
|
39 |
-
function_name = tool_call.function.name
|
40 |
-
if function_name not in available_functions:
|
41 |
-
return {
|
42 |
-
"tool_call_id": tool_call.id,
|
43 |
-
"role": "tool",
|
44 |
-
"content": f"Function {function_name} does not exist.",
|
45 |
-
}
|
46 |
-
function_to_call = available_functions[function_name]
|
47 |
-
function_args = json.loads(tool_call.function.arguments)
|
48 |
-
function_response = function_to_call(**function_args)
|
49 |
-
return {
|
50 |
-
"tool_call_id": tool_call.id,
|
51 |
-
"role": "tool",
|
52 |
-
"name": function_name,
|
53 |
-
"content": json.dumps(function_response),
|
54 |
-
}
|
55 |
-
|
56 |
-
def get_model_response(messages, inner_messages, message, system_message):
|
57 |
-
messages_for_model = []
|
58 |
-
for msg in messages:
|
59 |
-
native_messages = msg.get("metadata", {}).get("native_messages", [msg])
|
60 |
-
if isinstance(native_messages, list):
|
61 |
-
messages_for_model.extend(native_messages)
|
62 |
-
else:
|
63 |
-
messages_for_model.append(native_messages)
|
64 |
-
|
65 |
-
messages_for_model.insert(
|
66 |
-
0,
|
67 |
-
{
|
68 |
-
"role": "system",
|
69 |
-
"content": system_message,
|
70 |
-
},
|
71 |
-
)
|
72 |
-
messages_for_model.append(
|
73 |
-
{
|
74 |
-
"role": "user",
|
75 |
-
"content": message,
|
76 |
-
}
|
77 |
-
)
|
78 |
-
messages_for_model.extend(inner_messages)
|
79 |
-
|
80 |
-
try:
|
81 |
-
response = client.chat.completions.create(
|
82 |
-
model=MODEL,
|
83 |
-
messages=messages_for_model,
|
84 |
-
tools=tools,
|
85 |
-
temperature=0.5,
|
86 |
-
top_p=0.65,
|
87 |
-
max_tokens=4096,
|
88 |
-
)
|
89 |
-
return response.choices[0].message
|
90 |
-
except Exception as e:
|
91 |
-
print(f"An error occurred while getting model response: {str(e)}")
|
92 |
-
print(messages_for_model)
|
93 |
-
return None
|
94 |
-
|
95 |
-
def respond(message, history, system_message):
|
96 |
-
inner_history = []
|
97 |
-
available_functions = {
|
98 |
-
"legal_tool_function": legal_tool_function,
|
99 |
-
}
|
100 |
-
|
101 |
-
assistant_content = ""
|
102 |
-
assistant_native_message_list = []
|
103 |
-
|
104 |
-
while True:
|
105 |
-
response_message = get_model_response(history, inner_history, message, system_message)
|
106 |
-
|
107 |
-
if response_message is None:
|
108 |
-
return assistant_content, history
|
109 |
-
|
110 |
-
if not response_message.tool_calls and response_message.content is not None:
|
111 |
-
assistant_content += response_message.content
|
112 |
-
assistant_native_message_list.append(response_message)
|
113 |
-
break
|
114 |
-
|
115 |
-
if response_message.tool_calls is not None:
|
116 |
-
assistant_native_message_list.append(response_message)
|
117 |
-
inner_history.append(response_message)
|
118 |
-
|
119 |
-
assistant_content += (
|
120 |
-
"```json\n"
|
121 |
-
+ json.dumps(
|
122 |
-
[
|
123 |
-
tool_call.model_dump()
|
124 |
-
for tool_call in response_message.tool_calls
|
125 |
-
],
|
126 |
-
indent=2,
|
127 |
-
)
|
128 |
-
+ "\n```\n"
|
129 |
-
)
|
130 |
-
assistant_message = {
|
131 |
-
"role": "assistant",
|
132 |
-
"content": assistant_content,
|
133 |
-
"metadata": {"native_messages": assistant_native_message_list},
|
134 |
-
}
|
135 |
-
|
136 |
-
# Collect responses
|
137 |
-
response_list = [assistant_message]
|
138 |
-
|
139 |
-
for tool_call in response_message.tool_calls:
|
140 |
-
function_response = call_function(tool_call, available_functions)
|
141 |
-
assistant_content += (
|
142 |
-
"```json\n"
|
143 |
-
+ json.dumps(
|
144 |
-
{
|
145 |
-
"name": tool_call.function.name,
|
146 |
-
"arguments": json.loads(tool_call.function.arguments),
|
147 |
-
"response": json.loads(function_response["content"]),
|
148 |
-
},
|
149 |
-
indent=2,
|
150 |
-
)
|
151 |
-
+ "\n```\n"
|
152 |
-
)
|
153 |
-
native_tool_message = {
|
154 |
-
"tool_call_id": tool_call.id,
|
155 |
-
"role": "tool",
|
156 |
-
"content": function_response["content"],
|
157 |
-
}
|
158 |
-
assistant_native_message_list.append(
|
159 |
-
native_tool_message
|
160 |
-
)
|
161 |
-
tool_message = {
|
162 |
-
"role": "assistant",
|
163 |
-
"content": assistant_content,
|
164 |
-
"metadata": {"native_messages": assistant_native_message_list},
|
165 |
-
}
|
166 |
-
response_list.append(tool_message)
|
167 |
-
inner_history.append(native_tool_message)
|
168 |
-
|
169 |
-
return response_list, inner_history
|
170 |
-
|
171 |
-
# Update the system prompt to be more relevant to maritime legal assistance
|
172 |
-
system_prompt = "You are a maritime legal assistant with expertise in maritime law. Provide detailed legal advice and information based on maritime legal principles and regulations."
|
173 |
-
|
174 |
-
# Use gr.Blocks and gr.Chatbot for Gradio 3.x
|
175 |
-
with gr.Blocks() as demo:
|
176 |
-
chatbot = gr.Chatbot()
|
177 |
-
system_message_input = gr.Textbox(value=system_prompt, label="System message")
|
178 |
-
message_input = gr.Textbox(label="Message")
|
179 |
-
|
180 |
-
def process_message(message, history, system_message):
|
181 |
-
responses, updated_history = respond(message, history, system_message)
|
182 |
-
return responses, updated_history
|
183 |
-
|
184 |
-
message_input.submit(process_message, [message_input, chatbot, system_message_input], [chatbot, chatbot])
|
185 |
|
186 |
if __name__ == "__main__":
|
187 |
-
demo.launch()
|
|
|
6 |
|
7 |
# Use the fine-tuned maritime legal model
|
8 |
MODEL = "nomiChroma3.1"
|
9 |
+
##client = Groq(api_key=os.environ["GROQ_API_KEY"])
|
10 |
+
|
11 |
+
|
12 |
+
from huggingface_hub import InferenceClient
|
13 |
+
|
14 |
+
"""
|
15 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
16 |
+
"""
|
17 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
18 |
+
|
19 |
+
|
20 |
+
def respond(
|
21 |
+
message,
|
22 |
+
history: list[tuple[str, str]],
|
23 |
+
system_message,
|
24 |
+
max_tokens,
|
25 |
+
temperature,
|
26 |
+
top_p,
|
27 |
+
):
|
28 |
+
messages = [{"role": "system", "content": system_message}]
|
29 |
+
|
30 |
+
for val in history:
|
31 |
+
if val[0]:
|
32 |
+
messages.append({"role": "user", "content": val[0]})
|
33 |
+
if val[1]:
|
34 |
+
messages.append({"role": "assistant", "content": val[1]})
|
35 |
+
|
36 |
+
messages.append({"role": "user", "content": message})
|
37 |
+
|
38 |
+
response = ""
|
39 |
+
|
40 |
+
for message in client.chat_completion(
|
41 |
+
messages,
|
42 |
+
max_tokens=max_tokens,
|
43 |
+
stream=True,
|
44 |
+
temperature=temperature,
|
45 |
+
top_p=top_p,
|
46 |
+
):
|
47 |
+
token = message.choices[0].delta.content
|
48 |
+
|
49 |
+
response += token
|
50 |
+
yield response
|
51 |
+
|
52 |
+
"""
|
53 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
54 |
+
"""
|
55 |
+
demo = gr.ChatInterface(
|
56 |
+
respond,
|
57 |
+
additional_inputs=[
|
58 |
+
gr.Textbox(value="You are a maritime legal assistant with expertise strictly in indian maritime law. Provide detailed legal advice and information based on indian maritime legal principles and regulations.", label="System message"),
|
59 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
60 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
61 |
+
gr.Slider(
|
62 |
+
minimum=0.1,
|
63 |
+
maximum=1.0,
|
64 |
+
value=0.95,
|
65 |
+
step=0.05,
|
66 |
+
label="Top-p (nucleus sampling)",
|
67 |
+
),
|
68 |
+
],
|
69 |
+
title="Maritime Legal Compliance",
|
70 |
+
description="This chatbot uses the fine tune Llama 3.1 which has the capabilities of responding and helping in legal advices regarding maritime",
|
71 |
+
)
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
if __name__ == "__main__":
|
75 |
+
demo.launch()
|