Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,70 @@
|
|
1 |
import gradio as gr
|
2 |
import json
|
|
|
3 |
from huggingface_hub import InferenceClient
|
|
|
|
|
4 |
|
5 |
# Use the fine-tuned maritime legal model
|
6 |
MODEL = "nomiChroma3.1"
|
|
|
7 |
|
8 |
-
# Initialize the client with the correct model
|
9 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
10 |
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
messages = [{"role": "system", "content": system_message}]
|
14 |
-
|
15 |
-
# Add conversation history
|
16 |
-
for user_input, assistant_response in history:
|
17 |
-
if user_input:
|
18 |
-
messages.append({"role": "user", "content": user_input})
|
19 |
-
if assistant_response:
|
20 |
-
messages.append({"role": "assistant", "content": assistant_response})
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
23 |
messages.append({"role": "user", "content": message})
|
24 |
|
25 |
response = ""
|
26 |
-
|
27 |
-
try:
|
28 |
-
# Streaming the chat completion response
|
29 |
-
for message in client.chat_completion(
|
30 |
-
messages,
|
31 |
-
max_tokens=max_tokens,
|
32 |
-
stream=True,
|
33 |
-
temperature=temperature,
|
34 |
-
top_p=top_p,
|
35 |
-
):
|
36 |
-
try:
|
37 |
-
# Safely parse each streamed message item
|
38 |
-
payload = message.choices[0].delta.content
|
39 |
-
response += payload
|
40 |
-
yield response
|
41 |
-
except json.JSONDecodeError as e:
|
42 |
-
# Handle JSON parsing error
|
43 |
-
yield f"Error decoding JSON: {str(e)}"
|
44 |
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
|
|
|
|
49 |
demo = gr.ChatInterface(
|
50 |
respond,
|
51 |
additional_inputs=[
|
52 |
-
gr.Textbox(
|
53 |
-
value="You are a maritime legal assistant with expertise strictly in Indian maritime law. Provide detailed legal advice and information based on Indian maritime legal principles and regulations.",
|
54 |
-
label="System message"
|
55 |
-
),
|
56 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
57 |
-
gr.Slider(minimum=0.1, maximum
|
58 |
-
gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
],
|
60 |
title="Maritime Legal Compliance",
|
61 |
-
description="This chatbot uses the fine
|
62 |
)
|
63 |
|
|
|
64 |
if __name__ == "__main__":
|
65 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import json
|
3 |
+
import os
|
4 |
from huggingface_hub import InferenceClient
|
5 |
+
from groq import Groq
|
6 |
+
from groq.types.chat.chat_completion_tool_param import ChatCompletionToolParam
|
7 |
|
8 |
# Use the fine-tuned maritime legal model
|
9 |
MODEL = "nomiChroma3.1"
|
10 |
+
##client = Groq(api_key=os.environ["GROQ_API_KEY"])
|
11 |
|
|
|
12 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
13 |
|
14 |
+
|
15 |
+
def respond(
|
16 |
+
message,
|
17 |
+
history: list[tuple[str, str]],
|
18 |
+
system_message,
|
19 |
+
max_tokens,
|
20 |
+
temperature,
|
21 |
+
top_p,
|
22 |
+
):
|
23 |
messages = [{"role": "system", "content": system_message}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
for val in history:
|
26 |
+
if val[0]:
|
27 |
+
messages.append({"role": "user", "content": val[0]})
|
28 |
+
if val[1]:
|
29 |
+
messages.append({"role": "assistant", "content": val[1]})
|
30 |
+
|
31 |
messages.append({"role": "user", "content": message})
|
32 |
|
33 |
response = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
for message in client.chat_completion(
|
36 |
+
messages,
|
37 |
+
max_tokens=max_tokens,
|
38 |
+
stream=True,
|
39 |
+
temperature=temperature,
|
40 |
+
top_p=top_p,
|
41 |
+
):
|
42 |
+
token = message.choices[0].delta.content
|
43 |
+
|
44 |
+
response += token
|
45 |
+
yield response
|
46 |
|
47 |
+
"""
|
48 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
49 |
+
"""
|
50 |
demo = gr.ChatInterface(
|
51 |
respond,
|
52 |
additional_inputs=[
|
53 |
+
gr.Textbox(value="You are a maritime legal assistant with expertise strictly in indian maritime law. Provide detailed legal advice and information based on indian maritime legal principles and regulations.", label="System message"),
|
|
|
|
|
|
|
54 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
55 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
56 |
+
gr.Slider(
|
57 |
+
minimum=0.1,
|
58 |
+
maximum=1.0,
|
59 |
+
value=0.95,
|
60 |
+
step=0.05,
|
61 |
+
label="Top-p (nucleus sampling)",
|
62 |
+
),
|
63 |
],
|
64 |
title="Maritime Legal Compliance",
|
65 |
+
description="This chatbot uses the fine tune Llama 3.1 which has the capabilities of responding and helping in legal advices regarding maritime",
|
66 |
)
|
67 |
|
68 |
+
|
69 |
if __name__ == "__main__":
|
70 |
demo.launch()
|