asthaa30 commited on
Commit
a30a4a0
·
verified ·
1 Parent(s): b1fe4f8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -76
app.py CHANGED
@@ -1,85 +1,27 @@
1
- # app.py
2
 
3
- import gradio as gr
4
- from transformers import AutoTokenizer
5
- from groq import Groq
6
  import os
7
- from huggingface_hub import login
8
 
9
  # Initialize Groq API client
10
- try:
11
- client = Groq(api_key=os.environ["GROQ_API_KEY"])
12
- except KeyError:
13
- raise ValueError("GROQ_API_KEY environment variable not set.")
14
-
15
- # Load the Hugging Face token from the environment variable
16
- hf_token = os.getenv('HF_TOKEN')
17
- if hf_token is None:
18
- raise ValueError("Hugging Face token not found. Please set it as an environment variable.")
19
 
20
- # Authentication token for Hugging Face
21
- login(token=hf_token)
22
-
23
- # Model identifier for Groq API (you can replace it with your HF model if needed)
24
  model_name = "asthaa30/l3.1"
25
 
26
- # Load tokenizer (model will be accessed via Groq API)
 
 
 
 
27
  try:
28
- tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
 
 
 
 
 
 
 
29
  except Exception as e:
30
- raise ValueError(f"Failed to load tokenizer: {e}")
31
-
32
- def respond(
33
- message: str,
34
- history: list[tuple[str, str]],
35
- system_message: str,
36
- max_tokens: int,
37
- temperature: float,
38
- top_p: float,
39
- ) -> str:
40
- messages = [{"role": "system", "content": system_message}]
41
-
42
- for user_msg, assistant_msg in history:
43
- if user_msg:
44
- messages.append({"role": "user", "content": user_msg})
45
- if assistant_msg:
46
- messages.append({"role": "assistant", "content": assistant_msg})
47
-
48
- messages.append({"role": "user", "content": message})
49
-
50
- # Use Groq API to get the model's response
51
- try:
52
- response = client.chat.completions.create(
53
- model=model_name,
54
- messages=messages,
55
- max_tokens=max_tokens,
56
- temperature=temperature,
57
- top_p=top_p,
58
- )
59
- assistant_message = response.choices[0].message['content']
60
- except Exception as e:
61
- print(f"An error occurred while getting model response: {str(e)}")
62
- assistant_message = "An error occurred. Please try again later."
63
-
64
- return assistant_message
65
-
66
- demo = gr.ChatInterface(
67
- respond,
68
- additional_inputs=[
69
- gr.Textbox(value="You are an experienced maritime legal assistant.", label="System message"),
70
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
71
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
72
- gr.Slider(
73
- minimum=0.1,
74
- maximum=1.0,
75
- value=0.95,
76
- step=0.05,
77
- label="Top-p (nucleus sampling)",
78
- ),
79
- ],
80
- title="Maritime Legal Assistant",
81
- description="This chatbot provides legal assistance related to maritime laws using a fine-tuned model hosted on Hugging Face and integrated with Groq API.",
82
- )
83
-
84
- if __name__ == "__main__":
85
- demo.launch()
 
1
+ # test_groq_api.py
2
 
 
 
 
3
  import os
4
+ from groq import Groq
5
 
6
  # Initialize Groq API client
7
+ client = Groq(api_key=os.environ["GROQ_API_KEY"])
 
 
 
 
 
 
 
 
8
 
9
+ # Model identifier for Groq API
 
 
 
10
  model_name = "asthaa30/l3.1"
11
 
12
+ messages = [
13
+ {"role": "system", "content": "You are a friendly Chatbot."},
14
+ {"role": "user", "content": "Hello!"},
15
+ ]
16
+
17
  try:
18
+ response = client.chat.completions.create(
19
+ model=model_name,
20
+ messages=messages,
21
+ max_tokens=512,
22
+ temperature=0.7,
23
+ top_p=0.95,
24
+ )
25
+ print(response)
26
  except Exception as e:
27
+ print(f"An error occurred: {e}")