import gradio as gr import os from huggingface_hub import InferenceClient from huggingface_hub.inference._generated.types.chat_completion import ChatCompletionStreamOutput # Use the fine-tuned maritime legal model MODEL = "nomiChroma3.1" client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") from huggingface_hub.inference._generated.types.chat_completion import ChatCompletionStreamOutput def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" try: for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): try: if isinstance(message, ChatCompletionStreamOutput): content = message.choices[0].delta.content if content is not None: response += content yield response if message.choices[0].finish_reason == 'stop': break elif isinstance(message, dict): content = message.get('choices', [{}])[0].get('delta', {}).get('content') if content: response += content yield response if message.get('choices', [{}])[0].get('finish_reason') == 'stop': break elif isinstance(message, str): if message.strip(): # Only process non-empty strings response += message yield response else: print(f"Unexpected message type: {type(message)}") print(f"Message content: {message}") except Exception as e: print(f"Error processing message: {e}") print(f"Problematic message: {message}") continue # Continue to the next message even if there's an error # Final yield to ensure all content is returned if response: yield response except Exception as e: print(f"An error occurred in the main loop: {e}") if response: yield response else: yield f"An error occurred: {e}" # Gradio interface setup demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="You are a maritime legal assistant with expertise strictly in Indian maritime law. Provide detailed legal advice and information based on Indian maritime legal principles and regulations.", label="System message" ), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], title="Maritime Legal Compliance", description="This chatbot uses Fine-tuned LLAMA-3.1 model personalised specifically to provide assistance with Indian maritime legal queries.", theme="soft", examples=[ ["What are the key regulations governing ports in India?"], ["Explain the concept of cabotage in Indian maritime law."], ["What are the legal requirements for registering a vessel in India?"], ], cache_examples=False, ) # Launch the Gradio app if __name__ == "_main_": demo.launch()