Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
from tensorflow.keras import layers, models
|
4 |
+
from tensorflow.keras.applications import Xception
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
def build_deepfake_detection_model():
|
9 |
+
cnn_base = Xception(weights='imagenet', include_top=False, input_shape=(128, 128, 3))
|
10 |
+
cnn_base.trainable = True
|
11 |
+
for layer in cnn_base.layers[:-50]:
|
12 |
+
layer.trainable = False
|
13 |
+
input_layer = layers.Input(shape=(1, 128, 128, 3))
|
14 |
+
x = layers.TimeDistributed(cnn_base)(input_layer)
|
15 |
+
x = layers.TimeDistributed(layers.GlobalAveragePooling2D())(x)
|
16 |
+
x = layers.BatchNormalization()(x)
|
17 |
+
x = layers.Dropout(0.5)(x)
|
18 |
+
x = layers.LSTM(128)(x)
|
19 |
+
x = layers.Dropout(0.5)(x)
|
20 |
+
output = layers.Dense(1, activation='sigmoid')(x)
|
21 |
+
model = models.Model(inputs=input_layer, outputs=output)
|
22 |
+
return model
|
23 |
+
|
24 |
+
# Load the model (you'll need to upload your model weights to Hugging Face)
|
25 |
+
model = build_deepfake_detection_model()
|
26 |
+
model.load_weights('dfdc_cnn_lstm_model_finetuned.keras')
|
27 |
+
|
28 |
+
def process_video(video_path):
|
29 |
+
cap = cv2.VideoCapture(video_path)
|
30 |
+
frames = []
|
31 |
+
while True:
|
32 |
+
ret, frame = cap.read()
|
33 |
+
if not ret:
|
34 |
+
break
|
35 |
+
frame = cv2.resize(frame, (128, 128))
|
36 |
+
frame = frame.astype('float32') / 255.0
|
37 |
+
frames.append(frame)
|
38 |
+
cap.release()
|
39 |
+
return np.array(frames)
|
40 |
+
|
41 |
+
def predict_deepfake(video):
|
42 |
+
frames = process_video(video)
|
43 |
+
predictions = []
|
44 |
+
for frame in frames:
|
45 |
+
frame = np.expand_dims(frame, axis=0) # Add batch dimension
|
46 |
+
frame = np.expand_dims(frame, axis=0) # Add time dimension
|
47 |
+
prediction = model.predict(frame)
|
48 |
+
predictions.append(prediction[0][0])
|
49 |
+
|
50 |
+
avg_prediction = np.mean(predictions)
|
51 |
+
result = "Real" if avg_prediction > 0.5 else "Fake"
|
52 |
+
confidence = avg_prediction if result == "Real" else 1 - avg_prediction
|
53 |
+
|
54 |
+
return f"{result} with {confidence:.2%} confidence"
|
55 |
+
|
56 |
+
iface = gr.Interface(
|
57 |
+
fn=predict_deepfake,
|
58 |
+
inputs=gr.Video(),
|
59 |
+
outputs="text",
|
60 |
+
title="Deepfake Detection",
|
61 |
+
description="Upload a video to check if it's a deepfake or not."
|
62 |
+
)
|
63 |
+
|
64 |
+
iface.launch()
|