Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Request
|
2 |
+
from pydantic import BaseModel
|
3 |
+
import transformers
|
4 |
+
import torch
|
5 |
+
from fastapi.middleware.cors import CORSMiddleware
|
6 |
+
|
7 |
+
|
8 |
+
# Define the FastAPI app
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
app.add_middleware(
|
12 |
+
CORSMiddleware,
|
13 |
+
allow_origins=["*"],
|
14 |
+
allow_methods=["*"],
|
15 |
+
allow_headers=["*"],
|
16 |
+
)
|
17 |
+
|
18 |
+
# Load the model and tokenizer from Hugging Face
|
19 |
+
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct" # Replace with an appropriate model
|
20 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
|
21 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
22 |
+
model_id, device_map="auto", torch_dtype=torch.bfloat16
|
23 |
+
)
|
24 |
+
pipeline = transformers.pipeline(
|
25 |
+
"text-generation",
|
26 |
+
model=model,
|
27 |
+
tokenizer=tokenizer,
|
28 |
+
max_new_tokens=150,
|
29 |
+
temperature=0.7,
|
30 |
+
device_map="auto",
|
31 |
+
)
|
32 |
+
|
33 |
+
# Define the request model for email input
|
34 |
+
class EmailRequest(BaseModel):
|
35 |
+
subject: str
|
36 |
+
sender: str
|
37 |
+
recipients: str
|
38 |
+
body: str
|
39 |
+
|
40 |
+
# Define the FastAPI endpoint for email summarization
|
41 |
+
@app.post("/summarize-email/")
|
42 |
+
async def summarize_email(email: EmailRequest):
|
43 |
+
prompt = create_email_prompt(email.subject, email.sender, email.recipients, email.body)
|
44 |
+
|
45 |
+
# Use the pipeline to generate the summary
|
46 |
+
summary = pipeline(prompt)[0]["generated_text"]
|
47 |
+
|
48 |
+
return {"summary": summary}
|