Update main.py
Browse files
main.py
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
import transformers
|
4 |
-
import torch
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
-
|
7 |
-
|
8 |
import os
|
|
|
|
|
|
|
9 |
access_token_read = os.getenv('DS4')
|
10 |
print(access_token_read)
|
11 |
|
12 |
-
|
13 |
-
login(token
|
14 |
|
15 |
# Define the FastAPI app
|
16 |
app = FastAPI()
|
@@ -22,19 +22,22 @@ app.add_middleware(
|
|
22 |
allow_headers=["*"],
|
23 |
)
|
24 |
|
25 |
-
# Load the model and tokenizer from Hugging Face
|
26 |
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct" # Replace with an appropriate model
|
27 |
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
|
28 |
model = transformers.AutoModelForCausalLM.from_pretrained(
|
29 |
-
model_id,
|
|
|
30 |
)
|
|
|
|
|
31 |
pipeline = transformers.pipeline(
|
32 |
"text-generation",
|
33 |
model=model,
|
34 |
tokenizer=tokenizer,
|
35 |
max_new_tokens=150,
|
36 |
temperature=0.7,
|
37 |
-
|
38 |
)
|
39 |
|
40 |
# Define the request model for email input
|
@@ -44,6 +47,11 @@ class EmailRequest(BaseModel):
|
|
44 |
recipients: str
|
45 |
body: str
|
46 |
|
|
|
|
|
|
|
|
|
|
|
47 |
# Define the FastAPI endpoint for email summarization
|
48 |
@app.post("/summarize-email/")
|
49 |
async def summarize_email(email: EmailRequest):
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
import transformers
|
|
|
4 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
|
5 |
import os
|
6 |
+
from huggingface_hub import login
|
7 |
+
|
8 |
+
# Get access token from environment variable
|
9 |
access_token_read = os.getenv('DS4')
|
10 |
print(access_token_read)
|
11 |
|
12 |
+
# Login to Hugging Face Hub
|
13 |
+
login(token=access_token_read)
|
14 |
|
15 |
# Define the FastAPI app
|
16 |
app = FastAPI()
|
|
|
22 |
allow_headers=["*"],
|
23 |
)
|
24 |
|
25 |
+
# Load the model and tokenizer from Hugging Face, set device to CPU
|
26 |
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct" # Replace with an appropriate model
|
27 |
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
|
28 |
model = transformers.AutoModelForCausalLM.from_pretrained(
|
29 |
+
model_id,
|
30 |
+
# Removed device_map and low_cpu_mem_usage to avoid the need for 'accelerate'
|
31 |
)
|
32 |
+
|
33 |
+
# Set up the text generation pipeline for CPU
|
34 |
pipeline = transformers.pipeline(
|
35 |
"text-generation",
|
36 |
model=model,
|
37 |
tokenizer=tokenizer,
|
38 |
max_new_tokens=150,
|
39 |
temperature=0.7,
|
40 |
+
device=-1 # Force CPU usage
|
41 |
)
|
42 |
|
43 |
# Define the request model for email input
|
|
|
47 |
recipients: str
|
48 |
body: str
|
49 |
|
50 |
+
# Helper function to create the email prompt
|
51 |
+
def create_email_prompt(subject, sender, recipients, body):
|
52 |
+
prompt = f"Subject: {subject}\nFrom: {sender}\nTo: {recipients}\n\n{body}\n\nSummarize this email."
|
53 |
+
return prompt
|
54 |
+
|
55 |
# Define the FastAPI endpoint for email summarization
|
56 |
@app.post("/summarize-email/")
|
57 |
async def summarize_email(email: EmailRequest):
|