from fastapi import FastAPI from pydantic import BaseModel import transformers from fastapi.middleware.cors import CORSMiddleware import os from huggingface_hub import login # Get access token from environment variable access_token_read = os.getenv('DS4') print(access_token_read) # Login to Hugging Face Hub login(token=access_token_read) # Define the FastAPI app app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_methods=["*"], allow_headers=["*"], ) # Load the model and tokenizer from Hugging Face, set device to CPU model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct" # Replace with an appropriate model tokenizer = transformers.AutoTokenizer.from_pretrained(model_id) model = transformers.AutoModelForCausalLM.from_pretrained( model_id, # Removed device_map and low_cpu_mem_usage to avoid the need for 'accelerate' ) # Set up the text generation pipeline for CPU pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150, temperature=0.7, device=-1 # Force CPU usage ) # Define the request model for email input class EmailRequest(BaseModel): subject: str sender: str recipients: str body: str # Helper function to create the email prompt def create_email_prompt(subject, sender, recipients, body): prompt = f"Subject: {subject}\nFrom: {sender}\nTo: {recipients}\n\n{body}\n\nSummarize this email." return prompt # Define the FastAPI endpoint for email summarization @app.post("/summarize-email/") async def summarize_email(email: EmailRequest): prompt = create_email_prompt(email.subject, email.sender, email.recipients, email.body) # Use the pipeline to generate the summary summary = pipeline(prompt)[0]["generated_text"] return {"summary": summary}