Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
import os | |
import pandas as pd | |
# Load the text summarization pipeline | |
summarizer = pipeline("summarization", model="astro21/bart-cls_n") | |
chunk_counter = 0 | |
def summarize_text(input_text): | |
global chunk_counter | |
chunk_counter = 0 | |
max_chunk_size = 1024 | |
chunks = [input_text[i:i + max_chunk_size] for i in range(0, len(input_text), max_chunk_size)] | |
summarized_chunks = [] | |
chunk_lengths = [] | |
summarized_chunks_only = [] | |
for chunk in chunks: | |
chunk_counter += 1 | |
summarized_chunk = summarizer(chunk, max_length=128, min_length=64, do_sample=False)[0]['summary_text'] | |
summarized_chunks.append(f"Chunk {chunk_counter}:\n{summarized_chunk}") | |
summarized_chunks_only.append(summarized_chunk) | |
chunk_lengths.append(len(chunk)) | |
summarized_text = "\n".join(summarized_chunks) | |
summarized_text_only = "\n".join(summarized_chunks_only) | |
# Save the merged summary to a file | |
with open("summarized.txt", "w") as output_file: | |
output_file.write(summarized_text_only) | |
chunk_df = pd.DataFrame({'Chunk Number': range(1, chunk_counter + 1), 'Chunk Length': chunk_lengths}) | |
return summarized_text | |
# def read_file(file): | |
# print(file[0].name) | |
# with open(file[0].name, 'r') as file_: | |
# content = file_.read() | |
# return content | |
# def summarize_text_file(file): | |
# if file is not None: | |
# content = read_file(file) | |
# return summarize_text(content) | |
# input_type = gr.inputs.Textbox(label = "textbox" ) | |
# Name the outputs using the label parameter and provide a download option | |
demo = gr.Interface(fn=summarize_text, inputs=[gr.Textbox(label="Enter Text",placeholder="Ask me anything.",lines=3)], | |
outputs=[gr.Textbox(label="Summarized Text")], | |
title = "Text Summarization", | |
description = "Summarize text using BART", | |
theme = "huggingface", | |
allow_flagging="never", | |
live=True) | |
demo.launch(share=True,debug=True) | |