File size: 1,885 Bytes
2042c79
 
09b6adc
2042c79
09b6adc
 
3ee827b
0acd082
3ee827b
 
 
 
2042c79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ee827b
2042c79
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import os
import streamlit as st
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain, SequentialChain
from langchain.memory import ConversationBufferMemory
from langchain.utilities import WikipediaAPIWrapper
from transformers import GPT2LMHeadModel, GPT2Tokenizer

# Load the GPT-2 model and tokenizer
model_name = "gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
OpenAI = GPT2LMHeadModel.from_pretrained(model_name)


# app framework
st.title('Youtube Content Studio πŸš€')
prompt=st.text_input('Plug in your prompt here')

#Prompt templates
title_template=PromptTemplate(
    input_variables=['topic'],
    template='write me a youtube video title about {topic}'
)
script_template=PromptTemplate(
    input_variables=['title','wikipedia_research'],
    template='write me a youtube script based on this title TITLE: {title} while leveraging this wikipedia research: {wikipedia_research}'
)

# Memory
title_memory=ConversationBufferMemory(input_key='topic',memory_key='chat_history')
script_memory=ConversationBufferMemory(input_key='title',memory_key='chat_history')
# LLMS
llm=OpenAI(temperature=0.9)
title_chain=LLMChain(llm=llm,prompt=title_template,verbose=True,output_key='title',memory=title_memory)
script_chain=LLMChain(llm=llm,prompt=script_template,verbose=True,output_key='script',memory=script_memory)

wiki=WikipediaAPIWrapper()

# Show stuff to the screen if there is a prompt
if prompt:
    title=title_chain.run(prompt)
    wiki_research=wiki.run(prompt)
    script=script_chain.run(title=title,wikipedia_research=wiki_research)
    st.write(title)
    st.write(script)
    
    
    with st.expander('Title History'):
        st.info(title_memory.buffer)
    with st.expander('Script History'):
        st.info(script_memory.buffer)    
    with st.expander('Wikipedia research History'):
        st.info(wiki_research)