File size: 1,875 Bytes
2042c79
 
09b6adc
90a5b2d
09b6adc
 
3ee827b
0acd082
90a5b2d
3ee827b
 
 
90a5b2d
2042c79
 
 
90a5b2d
2042c79
90a5b2d
 
2042c79
 
 
90a5b2d
 
2042c79
 
 
 
90a5b2d
 
 
2042c79
90a5b2d
 
 
2042c79
90a5b2d
2042c79
3ee827b
2042c79
90a5b2d
 
 
2042c79
 
90a5b2d
2042c79
 
 
90a5b2d
2042c79
90a5b2d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
import streamlit as st
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain.utilities import WikipediaAPIWrapper
from transformers import GPT2LMHeadModel, GPT2Tokenizer


# Load the GPT-2 model and tokenizer
model_name = "gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)

# app framework
st.title('Youtube Content Studio πŸš€')
prompt = st.text_input('Plug in your prompt here')

# Prompt templates
title_template = PromptTemplate(
    input_variables=['topic'],
    template='write me a youtube video title about {topic}'
)
script_template = PromptTemplate(
    input_variables=['title', 'wikipedia_research'],
    template='write me a youtube script based on this title TITLE: {title} while leveraging this wikipedia research: {wikipedia_research}'
)

# Memory
title_memory = ConversationBufferMemory(input_key='topic', memory_key='chat_history')
script_memory = ConversationBufferMemory(input_key='title', memory_key='chat_history')

# LLMS
llm = model
title_chain = LLMChain(llm=llm, prompt=title_template, verbose=True, output_key='title', memory=title_memory)
script_chain = LLMChain(llm=llm, prompt=script_template, verbose=True, output_key='script', memory=script_memory)

wiki = WikipediaAPIWrapper()

# Show stuff to the screen if there is a prompt
if prompt:
    title = title_chain.run(prompt)
    wiki_research = wiki.run(prompt)
    script = script_chain.run(title=title, wikipedia_research=wiki_research)
    st.write(title)
    st.write(script)

    with st.expander('Title History'):
        st.info(title_memory.buffer)
    with st.expander('Script History'):
        st.info(script_memory.buffer)
    with st.expander('Wikipedia research History'):
        st.info(wiki_research)