import os import streamlit as st from langchain.prompts import PromptTemplate from langchain.chains import LLMChain, SequentialChain from langchain.memory import ConversationBufferMemory from langchain.utilities import WikipediaAPIWrapper from transformers import GPT2LMHeadModel, GPT2Tokenizer # Load the GPT-2 model and tokenizer model_name = "gpt2" tokenizer = GPT2Tokenizer.from_pretrained(model_name) OpenAI = GPT2LMHeadModel.from_pretrained(model_name) # app framework st.title('Youtube Content Studio 🚀') prompt=st.text_input('Plug in your prompt here') #Prompt templates title_template=PromptTemplate( input_variables=['topic'], template='write me a youtube video title about {topic}' ) script_template=PromptTemplate( input_variables=['title','wikipedia_research'], template='write me a youtube script based on this title TITLE: {title} while leveraging this wikipedia research: {wikipedia_research}' ) # Memory title_memory=ConversationBufferMemory(input_key='topic',memory_key='chat_history') script_memory=ConversationBufferMemory(input_key='title',memory_key='chat_history') # LLMS llm=OpenAI(temperature=0.9) title_chain=LLMChain(llm=llm,prompt=title_template,verbose=True,output_key='title',memory=title_memory) script_chain=LLMChain(llm=llm,prompt=script_template,verbose=True,output_key='script',memory=script_memory) wiki=WikipediaAPIWrapper() # Show stuff to the screen if there is a prompt if prompt: title=title_chain.run(prompt) wiki_research=wiki.run(prompt) script=script_chain.run(title=title,wikipedia_research=wiki_research) st.write(title) st.write(script) with st.expander('Title History'): st.info(title_memory.buffer) with st.expander('Script History'): st.info(script_memory.buffer) with st.expander('Wikipedia research History'): st.info(wiki_research)