ModelTest2 / app.py
asv7j's picture
Update app.py
c79fe72 verified
raw
history blame
6.97 kB
from fastapi import FastAPI
import time
import torch
import os
access_token = os.getenv("read_access")
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cpu" # the device to load the model onto
time1 = time.time()
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2-0.5B-Instruct",
torch_dtype="auto",
device_map="auto"
)
time2 = time.time()
print(time2-time1)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
time3 = time.time()
print(time3-time1)
model1 = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2-1.5B-Instruct",
torch_dtype="auto",
device_map="auto"
)
tokenizer1 = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct")
time4 = time.time()
print(time4-time3)
app = FastAPI()
time5 = time.time()
print(time5-time4)
tokenizer2 = AutoTokenizer.from_pretrained("google/gemma-2-2b-it", token=access_token)
model2 = AutoModelForCausalLM.from_pretrained(
"google/gemma-2-2b-it",
device_map="auto",
torch_dtype=torch.bfloat16,
token=access_token
)
model3 = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2-0.5B-Instruct",
device_map="auto"
)
@app.get("/")
async def read_root():
return {"Hello": "World!"}
start_time = time.time()
messages = [
{"role": "system", "content": "You are a helpful assistant, Sia, developed by Sushma. You will response in polity and brief."},
{"role": "user", "content": "I'm Alok. Who are you?"},
{"role": "assistant", "content": "I am Sia, a small language model created by Sushma."},
{"role": "user", "content": "How are you?"}
]
time1 = time.time()
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
time2 = time.time()
print(time2-time1)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
time3 = time.time()
print(time3-time2)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=64
)
time4 = time.time()
print(time4-time3)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
time5 = time.time()
print(time5-time4)
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
time6 = time.time()
print(time6-time5)
end_time = time.time()
time_taken = end_time - start_time
print(time_taken)
@app.get("/test")
async def read_droot():
starttime = time.time()
messages = [
{"role": "system", "content": "You are a helpful assistant, Sia, developed by Sushma. You will response in polity and brief."},
{"role": "user", "content": "I'm Alok. Who are you?"},
{"role": "assistant", "content": "I am Sia, a small language model created by Sushma."},
{"role": "user", "content": "How are you?"}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=64
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
end_time = time.time()
time_taken = end_time - starttime
print(time_taken)
return {"Hello": "World!"}
@app.get("/teat")
async def read_droot():
starttime = time.time()
messages = [
{"role": "system", "content": "You are a helpful assistant, Sia, developed by Sushma. You will response in polity and brief."},
{"role": "user", "content": "I'm Alok. Who are you?"},
{"role": "assistant", "content": "I am Sia, a small language model created by Sushma."},
{"role": "user", "content": "How are you?"}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model3.generate(
model_inputs.input_ids,
max_new_tokens=64
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
end_time = time.time()
time_taken = end_time - starttime
print(time_taken)
return {"Hello": "World!"}
@app.get("/text")
async def read_droot():
starttime = time.time()
messages = [
{"role": "system", "content": "You are a helpful assistant, Sia, developed by Sushma. You will response in polity and brief."},
{"role": "user", "content": "I'm Alok. Who are you?"},
{"role": "assistant", "content": "I am Sia, a small language model created by Sushma."},
{"role": "user", "content": "How are you?"}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer1([text], return_tensors="pt").to(device)
generated_ids = model1.generate(
model_inputs.input_ids,
max_new_tokens=64
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer1.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
end_time = time.time()
time_taken = end_time - starttime
print(time_taken)
return {"Hello": "World!"}
#return {response: time}
@app.get("/tet")
async def read_droot():
starttime = time.time()
messages = [
{"role": "system", "content": "You are a helpful assistant, Sia, developed by Sushma. You will response in polity and brief."},
{"role": "user", "content": "I'm Alok. Who are you?"},
{"role": "assistant", "content": "I am Sia, a small language model created by Sushma."},
{"role": "user", "content": "How are you?"}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer2([text], return_tensors="pt").to(device)
generated_ids = model2.generate(
model_inputs.input_ids,
max_new_tokens=64
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer2.batch_decode(generated_ids, skip_special_tokens=True)[0]
respons = tokenizer1.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
end_time = time.time()
time_taken = end_time - starttime
print(time_taken)
return {"Hello": respons}
#return {response: time}