Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
import time
|
3 |
-
|
4 |
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
device = "cpu" # the device to load the model onto
|
@@ -75,4 +75,39 @@ async def read_droot():
|
|
75 |
end_time = time.time()
|
76 |
time_taken = end_time - starttime
|
77 |
print(time_taken)
|
78 |
-
return {"Hello": "World!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI
|
2 |
import time
|
3 |
+
import torch
|
4 |
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
device = "cpu" # the device to load the model onto
|
|
|
75 |
end_time = time.time()
|
76 |
time_taken = end_time - starttime
|
77 |
print(time_taken)
|
78 |
+
return {"Hello": "World!"}
|
79 |
+
|
80 |
+
|
81 |
+
@app.get("/text")
|
82 |
+
async def readdroot():
|
83 |
+
starttime = time.time()
|
84 |
+
messages = [
|
85 |
+
{"role": "system", "content": "You are a helpful assistant, Sia. You are developed by Sushma. You will response in polity and brief."},
|
86 |
+
{"role": "user", "content": "Who are you?"},
|
87 |
+
{"role": "assistant", "content": "I am Sia, a small language model created by Sushma. I am here to assist you."},
|
88 |
+
{"role": "user", "content": "Hi, How are you?"}
|
89 |
+
]
|
90 |
+
text = tokenizer.apply_chat_template(
|
91 |
+
messages,
|
92 |
+
tokenize=False,
|
93 |
+
add_generation_prompt=True
|
94 |
+
)
|
95 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
96 |
+
|
97 |
+
with torch.no_grad(): # Disable gradient calculation
|
98 |
+
generated_ids = model.generate(
|
99 |
+
model_inputs.input_ids,
|
100 |
+
max_new_tokens=64, # Adjust this based on needs
|
101 |
+
use_cache=False # Use cached activations if applicable
|
102 |
+
)
|
103 |
+
|
104 |
+
generated_ids = [
|
105 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
106 |
+
]
|
107 |
+
|
108 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
109 |
+
print(response)
|
110 |
+
end_time = time.time()
|
111 |
+
time_taken = end_time - starttime
|
112 |
+
print(time_taken)
|
113 |
+
return {"Hello": "World!"}
|