unidisc / dataloader.py
aswerdlow's picture
Initial commit
131da64
raw
history blame contribute delete
28.6 kB
import math
import typing
from pathlib import Path
import tokenizers
import torch
import transformers
from unidisc.datasets.sampler import WeightedDatasetSampler
from models.datasets.image_datasets import TensorCollate, get_image_dataset, get_unpaired_dataset
from models.datasets.text_datasets import Text8Tokenizer, get_text_dataset
from torch.utils.data import default_collate
from decoupled_utils import breakpoint_on_error, gprint, rprint, is_torch_xla_available
from datasets import load_dataset
def identity(x):
return x
def get_dataset(dataset_name, tokenizer, *args, config=None, **kwargs):
rprint(f"getting dataset {dataset_name}")
if getattr(config.data, "unpaired", False):
return get_unpaired_dataset(config=config, tokenizer=tokenizer, **kwargs)
elif getattr(config.model, "image_model", False) or getattr(config.data, "force_image_dataset", False):
return get_image_dataset(config=config, tokenizer=tokenizer, **kwargs)
else:
rprint(f"getting text dataset")
return get_text_dataset(dataset_name, tokenizer, *args, **kwargs)
def tokenize_text(tokenizer, block_size, text, return_token_type_ids=True):
return tokenizer(text, max_length=block_size, padding="max_length", truncation=True, add_special_tokens=True, return_attention_mask=True, return_token_type_ids=return_token_type_ids).convert_to_tensors("pt")
def get_tokenizer(config):
if config.data.tokenizer_name_or_path is None or config.data.tokenizer_name_or_path == "None":
return None
elif config.data.tokenizer_name_or_path == "text8":
tokenizer = Text8Tokenizer()
elif config.data.tokenizer_name_or_path == "bert-base-uncased":
tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased")
else:
tokenizer_kwargs = dict()
if config.data.tokenizer_name_or_path == "NousResearch/Llama-2-7b-hf":
tokenizer_kwargs["add_eos_token"] = True
tokenizer_kwargs["padding_side"] = 'right'
rprint("Using Llama tokenizer, adding add_eos_token and setting padding_side to right")
if getattr(config.data, "use_slow_tokenizer", False):
tokenizer_kwargs["use_fast"] = False
tokenizer = transformers.AutoTokenizer.from_pretrained(config.data.tokenizer_name_or_path, **tokenizer_kwargs)
if getattr(config.data, "add_image_token", False):
special_token = '<image>'
existing_id = 811
tmp_index = len(tokenizer)
tokenizer.add_special_tokens({
'additional_special_tokens': [special_token]
}, replace_additional_special_tokens=False)
tokenizer._added_tokens_decoder[existing_id] = tokenizer._added_tokens_decoder.pop(tmp_index)
assert len(tokenizer.additional_special_tokens_ids) == 1
tokenizer.additional_special_tokens_ids = [existing_id]
tokenizer._added_tokens_encoder['<image>'] = existing_id
tokenizer.total_vocab_size = tmp_index
if isinstance(tokenizer, transformers.GPT2TokenizerFast) or isinstance(tokenizer, transformers.GPT2Tokenizer):
tokenizer._tokenizer.post_processor = tokenizers.processors.BertProcessing(
(tokenizer.bos_token, tokenizer.bos_token_id), (tokenizer.eos_token, tokenizer.eos_token_id)
)
# For wrapped batches:
# [BOS] sent1 [EOS] sent2-fragment [EOS]
# [BOS] sent2-fragment [EOS] sent3 [EOS]
if tokenizer.bos_token is None:
if tokenizer.cls_token is None:
raise AttributeError("Tokenizer must have a bos_token or " f"cls_token: {tokenizer}")
tokenizer.bos_token = tokenizer.cls_token
if tokenizer.eos_token is None:
if tokenizer.sep_token is None:
raise AttributeError("Tokenizer must have a eos_token " f"or sep_token: {tokenizer}")
tokenizer.eos_token = tokenizer.sep_token
if tokenizer.pad_token is None:
if config.data.tokenizer_name_or_path != "gpt2":
rprint(f"Adding pad token to tokenizer")
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
assert tokenizer.padding_side == 'right'
assert tokenizer.truncation_side == 'right'
return tokenizer
class SimpleDataLoader:
def __init__(self, dataset, batch_size=1, collate_fn=default_collate, **kwargs):
self.dataset = dataset
self.batch_size = batch_size
self.collate_fn = collate_fn
self.idx = 0
def __iter__(self):
return self
def __next__(self):
if self.idx < len(self.dataset):
batch = []
for _ in range(self.batch_size):
if self.idx >= len(self.dataset):
break
batch.append(self.dataset[self.idx])
self.idx += 1
return self.collate_fn(batch)
else:
raise StopIteration
def __len__(self):
return (len(self.dataset) + self.batch_size - 1) // self.batch_size
def get_zero_shot_dataloader(config, tokenizer, device=None, **kwargs):
if config.data.zero_shot_eval_dataset is None:
rprint("No zero shot eval dataset provided")
return None, None
dataset_name = config.data.zero_shot_eval_dataset
dataloader_seed = config.seed if config.mode == "eval" else 42
if dataset_name == "nlphuji/flickr30k":
data = load_dataset(dataset_name, num_proc=config.data.num_proc, cache_dir=config.data.cache_dir, streaming=config.data.streaming)
dataset = data["test"]
elif dataset_name == "facebook/winoground":
data = load_dataset(dataset_name, num_proc=config.data.num_proc, cache_dir=config.data.cache_dir, streaming=config.data.streaming)
dataset = data["test"]
breakpoint()
dl_cls = torch.utils.data.DataLoader
valid_loader = dl_cls(
dataset,
batch_size=config.loader.eval_batch_size,
num_workers=config.loader.num_eval_workers,
pin_memory=config.loader.pin_memory,
generator=torch.Generator().manual_seed(dataloader_seed),
persistent_workers=False,
**kwargs,
)
valid_loader.tokenizer = tokenizer
return valid_loader
def get_dataloaders(config, tokenizer, skip_train=False, skip_valid=False, valid_seed=None, device=None, **kwargs):
if skip_train:
train_set = None
else:
_mode = getattr(config.data, "force_train_mode", "train")
if _mode != "train":
rprint(f"Forcing train mode to {_mode}")
train_set = get_dataset(
config.data.train,
tokenizer,
mode=_mode,
wrap=config.data.wrap,
cache_dir=config.data.cache_dir,
block_size=config.model.length,
num_proc=config.data.num_proc,
streaming=config.data.streaming,
config=config,
**kwargs,
)
if hasattr(train_set, '__len__'):
rprint(f"Training set len: {len(train_set)}")
if config.data.valid in ["text8", "lm1b", "ag_news"]:
validation_split = "test"
else:
validation_split = "validation"
if skip_valid:
valid_set = None
else:
valid_set = get_dataset(
config.data.valid,
tokenizer,
wrap=config.data.wrap,
mode=validation_split,
cache_dir=config.data.cache_dir,
block_size=config.model.length,
streaming=False,
num_proc=config.data.num_proc,
config=config,
**kwargs,
)
if hasattr(valid_set, '__len__'):
rprint(f"Validation set len: {len(valid_set)}")
dataloader_seed = config.seed if (config.mode == "eval" or is_torch_xla_available() or getattr(config.data, "force_seed", False)) else 42
gprint(f"Dataloader seed: {dataloader_seed}")
if skip_train:
train_loader = None
else:
train_kwargs = dict(drop_last=True)
train_dataloader_generator = torch.Generator().manual_seed(dataloader_seed)
dl_cls = torch.utils.data.DataLoader
if getattr(config.data, "webdataset_iterable", False) or getattr(config.data, "webdataset_indexed", False):
train_kwargs.pop("drop_last", None)
if getattr(config.loader, "disable_prefetch", False):
train_kwargs["prefetch_factor"] = 1
if getattr(config.data, "force_disable_shuffle", False) is False:
if getattr(config.data, "webdataset_iterable", False):
import webdataset
dl_cls = webdataset.WebLoader
train_kwargs["shuffle"] = False
train_kwargs["prefetch_factor"] = 8
elif getattr(config.data, "webdataset_indexed", False):
import wids
train_kwargs["sampler"] = wids.DistributedChunkedSampler(train_set, shuffle=True)
elif isinstance(train_set, torch.utils.data.IterableDataset) is False:
train_kwargs["shuffle"] = True
if "tokens" in config.data.train and config.data.pin_dataset_to_gpu:
if config.backend == 'cuda':
cur_mb = torch.cuda.memory_reserved() / 1e9
rprint(f"Moving dataloader to device {device} with: {cur_mb} GB of memory reserved")
train_set = train_set.to(device=device)
if config.backend == 'cuda':
cur_mb = torch.cuda.memory_reserved() / 1e9
rprint(f"Moved dataloader to device {device} with: {cur_mb} GB of memory reserved")
if "tokens" in config.data.train:
if getattr(config.data, "use_custom_tensordict_collate", False):
train_kwargs["collate_fn"] = TensorCollate(device=device, enable_cuda_in_tensordict_collate=config.data.enable_cuda_in_tensordict_collate)
else:
train_kwargs["collate_fn"] = identity
if getattr(config.data, "use_packing_collate", False):
generator = torch.Generator().manual_seed(dataloader_seed)
token_collate = train_kwargs["collate_fn"] if getattr(config.data, "use_custom_tensordict_collate", False) else None
train_kwargs["collate_fn"] = PackingCollate(config, train_set, config.model.length, generator, tensor_collate=token_collate, tokenizer=tokenizer)
if getattr(config.data, "use_weighted_tensordict_sampler", False):
generator = torch.Generator().manual_seed(dataloader_seed)
train_kwargs['sampler'] = WeightedDatasetSampler(train_set, generator=generator)
train_kwargs["shuffle"] = False
else:
train_kwargs["shuffle"] = True
if getattr(config.data, "use_list_collate", False):
train_kwargs["collate_fn"] = lambda x: x
if getattr(config.data, "force_shuffle_train", False):
rprint("Forcing shuffle on train dataloader")
train_kwargs["shuffle"] = True
if getattr(config.data, "force_disable_shuffle_train", False):
rprint("Forcing disable shuffle on train dataloader")
train_kwargs["shuffle"] = False
if getattr(config.data, "force_distributed_sampler", False):
import torch_xla.runtime as xr
train_kwargs["sampler"] = torch.utils.data.distributed.DistributedSampler(
train_set,
num_replicas=xr.world_size(),
rank=xr.global_ordinal(),
shuffle=True
)
if getattr(config.data, "use_identity_collate", False):
train_kwargs["collate_fn"] = lambda x: x
if train_set.__class__.__name__ == "WebLoader":
train_loader = train_set
else:
rprint(f"Train dataloader kwargs: {train_kwargs}")
train_loader = dl_cls(
train_set,
batch_size=None if getattr(config.data, "webdataset_iterable", False) else config.loader.batch_size,
num_workers=config.loader.num_workers,
pin_memory=config.loader.pin_memory,
persistent_workers=config.loader.num_workers > 0 and getattr(config.loader, "persistent_workers", True),
generator=train_dataloader_generator,
**train_kwargs,
)
train_loader.tokenizer = tokenizer
if skip_valid:
valid_loader = None
else:
shuffle_valid = True
valid_dataloader_generator = torch.Generator().manual_seed(dataloader_seed)
valid_kwargs = dict(drop_last=True)
dl_cls = torch.utils.data.DataLoader
if getattr(config.data, "webdataset_iterable", False) or getattr(config.data, "webdataset_indexed", False):
valid_kwargs.pop("drop_last", None)
if getattr(config.data, "force_disable_shuffle", False) is False:
if getattr(config.data, "webdataset_iterable", False):
valid_kwargs["shuffle"] = False
import webdataset
dl_cls = webdataset.WebLoader
elif getattr(config.data, "webdataset_indexed", False):
import wids
valid_kwargs["sampler"] = wids.DistributedChunkedSampler(valid_set, shuffle=True)
elif isinstance(valid_set, torch.utils.data.IterableDataset) is False and shuffle_valid:
valid_kwargs["shuffle"] = shuffle_valid
if "tokens" in config.data.valid:
if getattr(config.data, "use_custom_tensordict_collate", False):
valid_kwargs["collate_fn"] = TensorCollate(device=device, enable_cuda_in_tensordict_collate=config.data.enable_cuda_in_tensordict_collate)
else:
valid_kwargs["collate_fn"] = identity
if getattr(config.data, "use_packing_collate", False):
generator = torch.Generator().manual_seed(dataloader_seed)
token_collate = valid_kwargs["collate_fn"] if getattr(config.data, "use_custom_tensordict_collate", False) else None
valid_kwargs["collate_fn"] = PackingCollate(config, valid_set, config.model.length, generator, tensor_collate=token_collate, tokenizer=tokenizer)
if getattr(config.data, "use_weighted_tensordict_sampler", False):
generator = torch.Generator().manual_seed(dataloader_seed)
valid_kwargs['sampler'] = WeightedDatasetSampler(valid_set, generator=generator)
if getattr(config.data, "shuffle_valid", False):
torch.manual_seed(config.seed)
valid_kwargs["shuffle"] = getattr(config.data, "shuffle_valid", False)
if getattr(config.data, "force_distributed_sampler", False):
import torch_xla.runtime as xr
valid_kwargs["sampler"] = torch.utils.data.distributed.DistributedSampler(
valid_set,
num_replicas=xr.world_size(),
rank=xr.global_ordinal(),
shuffle=True
)
if valid_set.__class__.__name__ == "WebLoader":
valid_loader = valid_set
else:
rprint(f"Valid dataloader kwargs: {valid_kwargs}")
valid_loader = dl_cls(
valid_set,
batch_size=None if getattr(config.data, "webdataset_iterable", False) else config.loader.eval_batch_size,
num_workers=getattr(config.loader, "num_eval_workers", config.loader.num_workers),
pin_memory=config.loader.pin_memory,
generator=valid_dataloader_generator,
persistent_workers=False,
**valid_kwargs,
)
# Will be used in generative perplexity calculation
valid_loader.tokenizer = tokenizer
return train_loader, valid_loader
# Samplers adapted from: https://github.com/Dao-AILab/flash-attention/blob/main/training/src/datamodules/fault_tolerant_sampler.py
class RandomFaultTolerantSampler(torch.utils.data.RandomSampler):
def __init__(self, *args, generator=None, **kwargs):
# TD [2022-07-17]: We don't force the seed to be zero. We generate random seed,
# which should be reproducible if pl.seed_everything was called beforehand.
# This means that changing the seed of the experiment will also change the
# sampling order.
if generator is None:
seed = int(torch.empty((), dtype=torch.int64).random_().item())
generator = torch.Generator().manual_seed(seed)
kwargs.pop("shuffle", None)
super().__init__(*args, generator=generator, **kwargs)
self.counter = 0
self.restarting = False
def state_dict(self):
return {"random_state": self.generator.get_state(), "counter": self.counter}
def load_state_dict(self, state_dict):
self.generator.set_state(state_dict.get("random_state"))
self.counter = state_dict["counter"]
# self.start_counter = self.counter
self.restarting = True
# TD [2022-08-28] Setting the len will cause PL to think there are only a few batches left per
# epoch, and subsequent epoch will have very few batches.
def __iter__(self) -> typing.Iterator[int]:
n = len(self.data_source)
self.state = self.generator.get_state()
indices = torch.randperm(n, generator=self.generator).tolist()
if not self.restarting:
self.counter = 0
else:
indices = indices[self.counter :]
self.restarting = False
for index in indices:
self.counter += 1
yield index
self.counter = 0
class FaultTolerantDistributedSampler(torch.utils.data.DistributedSampler):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.counter = 0
self.restarting = False
def state_dict(self):
return {"epoch": self.epoch, "counter": self.counter}
def load_state_dict(self, state_dict):
self.epoch = state_dict["epoch"]
self.counter = state_dict["counter"]
self.restarting = True
# TD [2022-08-28] Setting the len will cause PL to think there are only a few batches left per
# epoch, and subsequent epoch will have very few batches.
def __iter__(self):
if self.shuffle:
# deterministically shuffle based on epoch and seed
g = torch.Generator()
g.manual_seed(self.seed + self.epoch)
indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type]
else:
indices = list(range(len(self.dataset))) # type: ignore[arg-type]
if not self.drop_last:
# add extra samples to make it evenly divisible
padding_size = self.total_size - len(indices)
if padding_size <= len(indices):
indices += indices[:padding_size]
else:
indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size]
else:
# remove tail of data to make it evenly divisible.
indices = indices[: self.total_size]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank : self.total_size : self.num_replicas]
assert len(indices) == self.num_samples
if not self.restarting:
self.counter = 0
else:
indices = indices[self.counter :]
self.restarting = False
for index in indices:
self.counter += 1
yield index
self.counter = 0
if __name__ == "__main__":
import os
with breakpoint_on_error():
from omegaconf import OmegaConf
cc12m_config = OmegaConf.create(
{
"model": {
"image_model": True,
"unified_model": True,
},
"data": {
"tokenizers_parallelism": False,
"resolution": 128,
"train": "pixparse/cc12m-wds",
"val": "pixparse/cc12m-wds",
"streaming": False,
"precache": True,
"tokenizer_name_or_path": "gpt2",
"n_val_samples": None,
"n_train_samples": None,
"block_size": 32,
"data_dir": "/path/to/cc12m",
},
}
)
imagenet_config = OmegaConf.create(
{
"model": {
"image_model": True,
},
"data": {
"resolution": 128,
"train": "ILSVRC/imagenet-1k",
"val": "ILSVRC/imagenet-1k",
"streaming": False,
"precache": True,
"tokenizer_name_or_path": "gpt2",
},
}
)
facecaption_config = OmegaConf.create(
{
"seed": 12345,
"model": {
"image_model": True,
},
"data": {
"resolution": 256,
"train": "facecaption",
"val": "facecaption",
"streaming": False,
"precache": False,
"tokenizer_name_or_path": "gpt2",
"cache_dir": os.environ["HF_DATASETS_CACHE"],
"raw_data_dir": "/grogu/user/mprabhud/data/diffusion/facecaption",
"block_size": 32,
},
"loader": {
"num_workers": 0,
"batch_size": 1,
"eval_batch_size": 1,
},
"trainer": {
"devices": 1,
"num_nodes": 1,
"accumulate_grad_batches": 1,
},
}
)
tokenizer = get_tokenizer(facecaption_config)
dataset = get_dataset(
dataset_name=facecaption_config.data.train,
mode="train",
config=facecaption_config,
tokenizer=tokenizer,
)
test = next(iter(dataset))
breakpoint()
from typing import List, Dict
import torch
from tensordict import TensorDict
def process_batch(batch: TensorDict):
if isinstance(batch, list):
return [process_batch(b) for b in batch]
else:
if "write_flag" in batch:
del batch["write_flag"]
if "dataset_idx" in batch:
del batch["dataset_idx"]
batch.auto_batch_size_()
return batch
def ignore_slice(tensor, slice, padding_token_id):
tensor["modality"][slice] = -1
tensor["attention_mask"][slice] = 0
tensor["input_ids"][slice] = padding_token_id
if "sample_ids" in tensor:
tensor["sample_ids"][slice] = -1
else:
tensor["sample_ids"] = torch.full(tensor["input_ids"].shape, fill_value=-1, dtype=tensor["input_ids"].dtype, device=tensor["input_ids"].device)
class PackingCollate:
def __init__(self, config, dataset, seq_length, generator, tensor_collate=None, tokenizer=None):
self.dataset = dataset
self.seq_length = seq_length
self.tensor_collate = tensor_collate
self.generator = generator
self.tokenizer = tokenizer
self.padding_token_id = tokenizer.pad_token_id
self.eos_token_id = tokenizer.eos_token_id
self.disable_packing = getattr(config.data, "disable_packing", False)
img_special_tokens = tokenizer("<image>", add_special_tokens=False)['input_ids']
assert len(img_special_tokens) == 1
self.image_token_id = img_special_tokens[0]
def __call__(self, batch: TensorDict):
if self.tensor_collate is not None:
if isinstance(batch, list):
batch = [self.tensor_collate(b) for b in batch]
else:
batch = self.tensor_collate(batch)
B = len(batch)
seq_length = self.seq_length
batch = process_batch(batch)
assert batch[0].batch_size is None or len(batch[0].batch_size) == 1
new_batch = batch[0].new_zeros((B, seq_length))
ignore_slice(new_batch, slice(None, None), self.padding_token_id)
for i in range(B):
total_length = 0
sample_idx = 0
sample_queue = [batch[i]]
# We originally get bs number of samples but since we're packing, we probably need more so we randomly select.
while total_length < seq_length:
if self.disable_packing and sample_idx > 0:
break
if not sample_queue:
dataset_idx = torch.randint(len(self.dataset.datasets), (1,), generator=self.generator).item()
element_idx = torch.randint(len(self.dataset.datasets[dataset_idx]), (1,), generator=self.generator).item()
sample = self.dataset[(dataset_idx, element_idx)]
sample = process_batch(sample)
else:
sample = sample_queue.pop(0)
available_length = seq_length - total_length
if available_length < sample.shape[0] // 4:
if total_length > 0:
break
else:
continue
if "sample_ids" not in sample:
sequence_starts = (sample['input_ids'] == self.padding_token_id).long()
sample["sample_ids"] = torch.cumsum(sequence_starts, dim=0) - 1
processed_ids = torch.where(sample["sample_ids"] < 0, torch.zeros_like(sample["sample_ids"]), -1)
sample["sample_ids"] = processed_ids
if not ((sample["sample_ids"] == 0) | (sample["sample_ids"] == -1)).all():
assert (sample["modality"] == 0).all()
first_neg_one = (sample["sample_ids"] == -1).nonzero(as_tuple=True)[0]
if first_neg_one.numel() > 0:
first_neg_one = first_neg_one[0].item()
else:
assert sample["attention_mask"].all()
first_neg_one = len(sample["attention_mask"])
valid_slice = slice(None, min(first_neg_one, available_length))
new_length = min(first_neg_one, available_length)
sample["sample_ids"][valid_slice] = sample_idx
new_batch[i, total_length:total_length+new_length] = sample[valid_slice]
total_length += new_length
sample_idx += 1
if (new_batch["sample_ids"] == -1).all():
gprint(f"WARNING!!!! All sample ids are -1 in packing collate before ignore")
if new_batch["modality"][i, -1] == 1:
# Find contiguous sequence of image tokens from the end
modality_slice = new_batch["modality"][i]
is_image = modality_slice == 1
# Get indices where modality changes
change_points = torch.where(is_image[:-1] != is_image[1:])[0] + 1
if change_points.numel() > 0 and is_image[-1]:
# Get start of last contiguous image sequence
start_pos = change_points[-1].item()
assert (new_batch["modality"][i, start_pos:] == 1).all()
try:
if start_pos > 0 and new_batch["input_ids"][i, start_pos - 1] == self.image_token_id:
start_pos -= 1
if start_pos > 0 and new_batch["input_ids"][i, start_pos - 1] != self.eos_token_id:
new_batch["input_ids"][i, start_pos] = self.eos_token_id
new_batch["attention_mask"][i, start_pos] = 1
new_batch["modality"][i, start_pos] = 0
start_pos += 1
except IndexError:
print(f"WARNING!!!! ERROR IN PACKING COLLATE")
ignore_slice(new_batch[i], slice(start_pos, None), self.padding_token_id)
if (new_batch["sample_ids"] == -1).all():
gprint(f"WARNING!!!! All sample ids are -1 in packing collate after ignore")
return new_batch