Spaces:
Runtime error
Runtime error
File size: 25,061 Bytes
0482489 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 |
from typing import Callable, Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, unfreeze
from jax import lax
from jax.random import PRNGKey
from transformers import GPT2Config, FlaxViTModel, ViTConfig
from transformers.modeling_flax_outputs import (
FlaxCausalLMOutputWithCrossAttentions,
FlaxSeq2SeqLMOutput,
FlaxSeq2SeqModelOutput,
)
from transformers.models.bart.modeling_flax_bart import (
shift_tokens_right,
)
from .modeling_flax_gpt2 import (
FlaxGPT2Module,
FlaxGPT2Model,
FlaxPreTrainedModel
)
from transformers.models.vit.modeling_flax_vit import FlaxViTModule
from .configuration_vit_gpt2 import ViTGPT2Config
class FlaxViTGPT2Module(nn.Module):
config: ViTGPT2Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.encoder = FlaxViTModule(self.config.vit_config, dtype=self.dtype)
self.decoder = FlaxGPT2Module(self.config.gpt2_config, dtype=self.dtype)
def _get_encoder_module(self):
return self.encoder
def _get_decoder_module(self):
return self.decoder
def __call__(
self,
pixel_values,
input_ids,
attention_mask,
position_ids,
encoder_attention_mask: Optional[jnp.ndarray] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
encoder_outputs = self.encoder(
pixel_values=pixel_values,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
decoder_outputs = self.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=encoder_attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
return FlaxSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
class FlaxViTGPT2ForConditionalGenerationModule(nn.Module):
config: ViTGPT2Config
dtype: jnp.dtype = jnp.float32
bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
def setup(self):
self.model = FlaxViTGPT2Module(config=self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.model.decoder.embed_dim,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(
self.config.gpt2_config.initializer_range, self.dtype
),
)
self.final_logits_bias = self.param(
"final_logits_bias", self.bias_init, (1, self.model.decoder.embed_dim)
)
def _get_encoder_module(self):
return self.model.encoder
def _get_decoder_module(self):
return self.model.decoder
def __call__(
self,
pixel_values,
input_ids,
attention_mask,
position_ids,
encoder_attention_mask: Optional[jnp.ndarray] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
outputs = self.model(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
hidden_states = outputs[0]
lm_logits = self.lm_head(hidden_states)
lm_logits += self.final_logits_bias
if not return_dict:
output = (lm_logits,) + outputs[1:]
return output
return FlaxSeq2SeqLMOutput(
logits=lm_logits,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
class FlaxViTGPT2PreTrainedModel(FlaxPreTrainedModel):
config_class = ViTGPT2Config
base_model_prefix: str = "model"
module_class: nn.Module = None
def __init__(
self,
config: ViTGPT2Config,
input_shape: Tuple = None,
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
**kwargs,
):
if input_shape is None:
input_shape = (
(1, config.vit_config.image_size, config.vit_config.image_size, 3),
(1, 1),
)
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(
config, module, input_shape=input_shape, seed=seed, dtype=dtype
)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
# init input tensors
pixel_values = jax.random.normal(rng, input_shape[0])
# # make sure initialization pass will work for FlaxBartForSequenceClassificationModule
# input_ids = jax.ops.index_update(input_ids, (..., -1), self.config.eos_token_id)
input_ids = jnp.zeros(input_shape[1], dtype="i4")
attention_mask = jnp.ones_like(input_ids)
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
return self.module.init(
rngs,
pixel_values,
input_ids,
attention_mask,
position_ids,
)["params"]
def init_cache(self, batch_size, max_length, encoder_outputs):
input_ids = jnp.ones((batch_size, max_length), dtype="i4")
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(
jnp.arange(jnp.atleast_2d(input_ids).shape[-1]),
input_ids.shape,
)
def _decoder_forward(
module,
input_ids,
attention_mask,
position_ids,
**kwargs,
):
decoder_module = module._get_decoder_module()
return decoder_module(
input_ids,
attention_mask,
position_ids,
**kwargs,
)
init_variables = self.module.init(
jax.random.PRNGKey(0),
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
encoder_hidden_states=encoder_outputs[0],
init_cache=True,
method=_decoder_forward, # we only need to call the decoder to init the cache
)
return unfreeze(init_variables["cache"])
def encode(
self,
pixel_values: jnp.ndarray,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.return_dict
)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
def _encoder_forward(module, pixel_values, **kwargs):
encode_module = module._get_encoder_module()
return encode_module(pixel_values, **kwargs)
return self.module.apply(
{"params": params or self.params},
pixel_values=jnp.array(pixel_values, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
method=_encoder_forward,
)
def decode(
self,
input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.return_dict
)
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = input_ids.shape
if attention_mask is None:
attention_mask = jnp.ones((batch_size, sequence_length))
if position_ids is None:
if past_key_values is not None:
raise ValueError(
"Make sure to provide `position_ids` when passing `past_key_values`."
)
position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxGPT2Attention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(
module,
input_ids,
attention_mask,
position_ids,
**kwargs,
):
decoder_module = module._get_decoder_module()
return decoder_module(
input_ids,
attention_mask,
position_ids,
**kwargs,
)
outputs = self.module.apply(
inputs,
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past = outputs
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past = outputs
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
def __call__(
self,
pixel_values: jnp.ndarray,
input_ids: Optional[jnp.ndarray] = None,
attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.return_dict
)
pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
# # prepare encoder inputs
# if encoder_attention_mask is None:
# encoder_attention_mask = jnp.ones_like(input_ids)
# if position_ids is None:
# batch_size, sequence_length = input_ids.shape
# position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
# prepare decoder inputs
# if decoder_input_ids is None:
# decoder_input_ids = shift_tokens_right(
# input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id
# ) # TODO: Check how to use this
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
return self.module.apply(
{"params": params or self.params},
pixel_values=jnp.array(pixel_values, dtype=jnp.float32),
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
)
class FlaxViTGPT2ForConditionalGeneration(FlaxViTGPT2PreTrainedModel):
module_class = FlaxViTGPT2ForConditionalGenerationModule
dtype: jnp.dtype = jnp.float32
def decode(
self,
input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
deterministic: bool = True,
params: dict = None,
dropout_rng: PRNGKey = None,
):
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.return_dict
)
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = input_ids.shape
if attention_mask is None:
attention_mask = jnp.ones((batch_size, sequence_length))
if position_ids is None:
if past_key_values is not None:
raise ValueError(
"Make sure to provide `position_ids` when passing `past_key_values`."
)
position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxGPT2Attention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(
module,
input_ids,
attention_mask,
position_ids,
**kwargs,
):
decoder_module = module._get_decoder_module()
outputs = decoder_module(
input_ids,
attention_mask,
position_ids,
**kwargs,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = module.model.variables["params"]["shared"][
"embedding"
]
lm_logits = module.lm_head.apply(
{"params": {"kernel": shared_embedding.T}}, hidden_states
)
else:
lm_logits = module.lm_head(hidden_states)
lm_logits += module.final_logits_bias
return lm_logits, outputs
outputs = self.module.apply(
inputs,
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
if past_key_values is None:
lm_logits, outputs = outputs
else:
(lm_logits, outputs), past = outputs
if return_dict:
outputs = FlaxCausalLMOutputWithCrossAttentions(
logits=lm_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
else:
outputs = (lm_logits,) + outputs[1:]
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
def prepare_inputs_for_generation(
self,
input_ids,
max_length,
encoder_attention_mask: Optional[jnp.DeviceArray] = None,
attention_mask: Optional[jnp.DeviceArray] = None,
encoder_outputs=None,
**kwargs,
):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(
extended_attention_mask, attention_mask, (0, 0)
)
else:
position_ids = jnp.broadcast_to(
jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)
)
return {
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"encoder_attention_mask": encoder_attention_mask,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = (
model_kwargs["position_ids"][:, -1:] + 1
)
return model_kwargs
@classmethod
def from_vit_gpt2_pretrained(
cls,
vit_model_name_or_path: str = None,
gpt2_model_name_or_path: str = None,
*model_args,
**kwargs,
) -> FlaxViTGPT2PreTrainedModel:
kwargs_gpt2 = {
argument[len("gpt2_") :]: value
for argument, value in kwargs.items()
if argument.startswith("gpt2_")
}
kwargs_vit = {
argument[len("vit_") :]: value
for argument, value in kwargs.items()
if argument.startswith("vit_")
}
# remove gpt2, vit kwargs from kwargs
for key in kwargs_gpt2.keys():
del kwargs["gpt2_" + key]
for key in kwargs_vit.keys():
del kwargs["vit_" + key]
# Load and initialize the gpt2 and vit model
gpt2_model = kwargs_gpt2.pop("model", None)
if gpt2_model is None:
assert (
gpt2_model_name_or_path is not None
), "If `model` is not defined as an argument, a `gpt2_model_name_or_path` has to be defined"
if "config" not in kwargs_gpt2:
gpt2_config = GPT2Config.from_pretrained(gpt2_model_name_or_path)
kwargs_gpt2["config"] = gpt2_config
kwargs_gpt2["config"].add_cross_attention = True
gpt2_model = FlaxGPT2Model.from_pretrained(
gpt2_model_name_or_path, *model_args, **kwargs_gpt2
)
vit_model = kwargs_vit.pop("model", None)
if vit_model is None:
assert (
vit_model_name_or_path is not None
), "If `model` is not defined as an argument, a `vit_model_name_or_path` has to be defined"
if "config" not in kwargs_vit:
vit_config = ViTConfig.from_pretrained(vit_model_name_or_path)
kwargs_vit["config"] = vit_config
vit_model = FlaxViTModel.from_pretrained(
vit_model_name_or_path, *model_args, **kwargs_vit
)
# instantiate config with corresponding kwargs
dtype = kwargs.pop("dtype", jnp.float32)
config = ViTGPT2Config.from_vit_gpt2_configs(
vit_model.config, gpt2_model.config, **kwargs
)
# init model
model = cls(config, *model_args, dtype=dtype, **kwargs)
model.params["model"]["encoder"] = vit_model.params
model.params["model"]["decoder"] = gpt2_model.params
return model
|