image_captioning / vit_gpt2 /configuration_vit_gpt2.py
aswinkvj's picture
commit
0482489
import copy
from transformers import GPT2Config, ViTConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class ViTGPT2Config(PretrainedConfig):
model_type = "vit-gpt2"
is_composition = True
def __init__(self, **kwargs):
super().__init__(**kwargs)
if "vit_config" not in kwargs:
raise ValueError("`vit_config` can not be `None`.")
if "gpt2_config" not in kwargs:
raise ValueError("`gpt2_config` can not be `None`.")
vit_config = kwargs.pop("vit_config")
gpt2_config = kwargs.pop("gpt2_config")
self.vit_config = ViTConfig(**vit_config)
self.gpt2_config = GPT2Config(**gpt2_config)
@classmethod
def from_vit_gpt2_configs(
cls, vit_config: PretrainedConfig, gpt2_config: PretrainedConfig, **kwargs
):
return cls(
vit_config=vit_config.to_dict(),
gpt2_config=gpt2_config.to_dict(),
**kwargs
)
def to_dict(self):
output = copy.deepcopy(self.__dict__)
output["vit_config"] = self.vit_config.to_dict()
output["gpt2_config"] = self.gpt2_config.to_dict()
output["model_type"] = self.__class__.model_type
return output