Spaces:
Build error
Build error
File size: 11,039 Bytes
d3c3946 a43ffec d3c3946 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import gc
import os
import re
import shutil
import urllib.request
from pathlib import Path
from tempfile import NamedTemporaryFile
import fitz
import numpy as np
import openai
import torch
import torch.nn.functional as F
from fastapi import UploadFile
from lcserve import serving
from optimum.bettertransformer import BetterTransformer
from sklearn import svm
from sklearn.cluster import KMeans
from sklearn.metrics import pairwise_distances_argmin_min
from torch import Tensor
from transformers import AutoModel, AutoTokenizer
recommender = None
def download_pdf(url, output_path):
urllib.request.urlretrieve(url, output_path)
def preprocess(text):
text = text.replace("-\n", "")
text = text.replace("\n", " ")
text = re.sub("\s+", " ", text)
return text
def get_margin(pdf):
page = pdf[0]
page_size = page.mediabox
margin_hor = page.mediabox.width * 0.05
margin_ver = page.mediabox.height * 0.05
margin_size = page_size + (margin_hor, margin_ver, -margin_hor, -margin_ver)
return margin_size
def pdf_to_text(path, start_page=1, end_page=None):
doc = fitz.open(path)
total_pages = doc.page_count
if end_page is None:
end_page = total_pages
text_list = []
margin_size = get_margin(doc)
for i in range(start_page - 1, end_page):
page = doc[i]
page.set_cropbox(margin_size)
text = page.get_text("text")
text = preprocess(text)
text_list.append(text)
doc.close()
return text_list
def text_to_chunks(texts, word_length=150, start_page=1):
text_toks = [t.split(" ") for t in texts]
page_nums = []
chunks = []
for idx, words in enumerate(text_toks):
for i in range(0, len(words), word_length):
chunk = words[i : i + word_length]
if (
(i + word_length) > len(words)
and (len(chunk) < word_length)
and (len(text_toks) != (idx + 1))
):
text_toks[idx + 1] = chunk + text_toks[idx + 1]
continue
chunk = " ".join(chunk).strip()
chunk = f"[Page no. {idx+start_page}]" + " " + '"' + chunk + '"'
chunks.append(chunk)
return chunks
class SemanticSearch:
def __init__(self, embedding_model):
self.tokenizer = AutoTokenizer.from_pretrained(f"intfloat/{embedding_model}")
self.model = AutoModel.from_pretrained(
f"intfloat/{embedding_model}",
# cache_dir =,
)
self.model = BetterTransformer.transform(self.model, keep_original_model=True)
# set device
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = self.model.to(self.device)
self.fitted = False
def fit(self, data, batch_size=32, n_neighbors=5):
self.data = data
self.embeddings = self.get_text_embedding(self.data, batch_size=batch_size)
self.fitted = True
def __call__(self, text, return_data=True):
self.inp_emb = self.get_text_embedding([text], prefix="query")
self.matches = self.run_svm(self.inp_emb, self.embeddings)
if return_data:
# return 5 first match, first index is query, so it has to be skipped
return [self.data[i - 1] for i in self.matches[1:6]]
else:
return self.matches
def average_pool(
self, last_hidden_states: Tensor, attention_mask: Tensor
) -> Tensor:
self.last_hidden = last_hidden_states.masked_fill(
~attention_mask[..., None].bool(), 0.0
)
return self.last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
def get_text_embedding(self, texts, prefix="passage", batch_size=32):
# Tokenize the input texts
texts = [f"{prefix}: {text}" for text in texts]
batch_dict = self.tokenizer(
texts, max_length=512, padding=True, truncation=True, return_tensors="pt"
).to(self.device)
with torch.no_grad():
outputs = self.model(**batch_dict)
embeddings = self.average_pool(
outputs.last_hidden_state, batch_dict["attention_mask"]
)
# Normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
# Convert pytorch tensor to numpy array (no grad)
if self.device == "cuda":
embeddings = embeddings.detach().cpu().clone().numpy()
else:
embeddings = embeddings.detach().numpy()
return embeddings
def run_svm(self, query_emb, passage_emb):
joined_emb = np.concatenate((query_emb, passage_emb))
# create var for SVM label
y = np.zeros(joined_emb.shape[0])
# mark query as a positive example
y[0] = 1
# declare SVM
clf = svm.LinearSVC(
class_weight="balanced", verbose=False, max_iter=10000, tol=1e-6, C=0.1
)
# train (Exemplar) SVM
clf.fit(joined_emb, y)
# infer on original data
similarities = clf.decision_function(joined_emb)
sorted_ix = np.argsort(-similarities)
return sorted_ix
def summarize(self):
n_clusters = int(np.ceil(len(self.embeddings)**0.5))
# max cluster 5 (reserve token)
n_clusters = n_clusters if n_clusters <= 5 else 5
kmeans = KMeans(n_clusters=n_clusters, random_state=23)
kmeans = kmeans.fit(self.embeddings)
avg = []
closest = []
for j in range(n_clusters):
# find first chunk index of every cluster
idx = np.where(kmeans.labels_ == j)[0]
avg.append(np.mean(idx))
# find chunk that is closest to the centroid
closest, _ = pairwise_distances_argmin_min(kmeans.cluster_centers_,
self.embeddings)
ordering = sorted(range(n_clusters), key=lambda k: avg[k])
# concat representative chunks
summary = [self.data[i] for i in [closest[idx] for idx in ordering]]
return summary
def clear_cache():
global recommender
if "recommender" in globals():
del recommender
gc.collect()
if torch.cuda.is_available():
return torch.cuda.empty_cache()
def load_recommender(path, embedding_model, rebuild_embedding, start_page=1):
global recommender
if rebuild_embedding:
clear_cache()
recommender = None
if recommender is None:
recommender = SemanticSearch(embedding_model)
if recommender.fitted:
return "Corpus Loaded."
else:
texts = pdf_to_text(path, start_page=start_page)
chunks = text_to_chunks(texts, start_page=start_page)
recommender.fit(chunks)
return "Corpus Loaded."
def generate_text(openai_key, prompt, model="gpt-3.5-turbo"):
openai.api_key = openai_key
completions = openai.ChatCompletion.create(
model=model,
messages=[{"role": "user", "content": prompt}],
max_tokens=512,
n=1,
stop=None,
temperature=0.7,
)
message = f"{prompt}###{completions.choices[0].message.content}###{completions.usage.total_tokens}###{completions.model}"
return message
def generate_answer(question, gpt_model, openai_key):
topn_chunks = recommender(question)
prompt = ""
prompt += "search results:\n\n"
for c in topn_chunks:
prompt += c + "\n\n"
prompt += (
"Instructions: Compose a comprehensive reply to the query using the search results given. "
"Cite each reference using [ Page Number] notation (every result has this number at the beginning). "
"Citation should be done at the end of each sentence. If the search results mention multiple subjects "
"with the same name, create separate answers for each. Only include information found in the results and "
"don't add any additional information. Make sure the answer is correct and don't output false content. "
"If the text does not relate to the query, simply state 'Text Not Found in PDF'. Ignore outlier "
"search results which has nothing to do with the question. Only answer what is asked. The "
"answer should be short and concise. Answer step-by-step.\n\n"
)
prompt += f"Query: {question}"
answer = generate_text(openai_key, prompt, gpt_model)
return answer
def generate_summary(gpt_model, openai_key):
topn_chunks = recommender.summarize()
prompt = ""
prompt += (
"Summarize the highlights of the search results and output a summary in bulletpoints. "
"Do not write anything before the bulletpoints. "
"Cite each reference using [Page no.] notation (every result has this number at the beginning). "
"Citation should be done at the end of each sentence. "
"Give conclusion in the end. "
"Write your response in the language of the search results. "
"Search results:\n\n"
)
for c in topn_chunks:
prompt += c + "\n\n"
summary = generate_text(openai_key, prompt, gpt_model)
return summary
def load_openai_key() -> str:
key = os.environ.get("OPENAI_API_KEY")
if key is None:
raise ValueError(
"[ERROR]: Please pass your OPENAI_API_KEY. Get your key here : https://platform.openai.com/account/api-keys"
)
return key
# %%
@serving
def ask_url(
url: str,
question: str,
rebuild_embedding: bool,
embedding_model: str,
gpt_model: str,
) -> str:
if rebuild_embedding:
load_url(url, embedding_model, rebuild_embedding)
openai_key = load_openai_key()
return generate_answer(question, gpt_model, openai_key)
@serving
async def ask_file(
file: UploadFile,
question: str,
rebuild_embedding: bool,
embedding_model: str,
gpt_model: str,
) -> str:
if rebuild_embedding:
load_file(file, embedding_model, rebuild_embedding)
openai_key = load_openai_key()
return generate_answer(question, gpt_model, openai_key)
@serving
def load_url(url: str,
embedding_model: str,
rebuild_embedding: bool,
gpt_model: str
) -> str:
download_pdf(url, "corpus.pdf")
notification = load_recommender("corpus.pdf", embedding_model, rebuild_embedding)
openai_key = load_openai_key()
summary = generate_summary(gpt_model, openai_key)
response = f"{notification}###{summary}"
return response
@serving
async def load_file(
file: UploadFile,
embedding_model: str,
rebuild_embedding: bool,
gpt_model: str
) -> str:
suffix = Path(file.filename).suffix
with NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
shutil.copyfileobj(file.file, tmp)
tmp_path = Path(tmp.name)
notification = load_recommender(str(tmp_path), embedding_model, rebuild_embedding)
openai_key = load_openai_key()
summary = generate_summary(gpt_model, openai_key)
response = f"{notification}###{summary}"
return response
|