pdfGPT-chat / api.py
mphycx
Push large file
d3c3946
raw
history blame
11 kB
import gc
import os
import re
import shutil
import urllib.request
from pathlib import Path
from tempfile import NamedTemporaryFile
import fitz
import numpy as np
import openai
import torch
import torch.nn.functional as F
from fastapi import UploadFile
from lcserve import serving
from optimum.bettertransformer import BetterTransformer
from sklearn import svm
from sklearn.cluster import KMeans
from sklearn.metrics import pairwise_distances_argmin_min
from torch import Tensor
from transformers import AutoModel, AutoTokenizer
recommender = None
def download_pdf(url, output_path):
urllib.request.urlretrieve(url, output_path)
def preprocess(text):
text = text.replace("-\n", "")
text = text.replace("\n", " ")
text = re.sub("\s+", " ", text)
return text
def get_margin(pdf):
page = pdf[0]
page_size = page.mediabox
margin_hor = page.mediabox.width * 0.05
margin_ver = page.mediabox.height * 0.05
margin_size = page_size + (margin_hor, margin_ver, -margin_hor, -margin_ver)
return margin_size
def pdf_to_text(path, start_page=1, end_page=None):
doc = fitz.open(path)
total_pages = doc.page_count
if end_page is None:
end_page = total_pages
text_list = []
margin_size = get_margin(doc)
for i in range(start_page - 1, end_page):
page = doc[i]
page.set_cropbox(margin_size)
text = page.get_text("text")
text = preprocess(text)
text_list.append(text)
doc.close()
return text_list
def text_to_chunks(texts, word_length=150, start_page=1):
text_toks = [t.split(" ") for t in texts]
page_nums = []
chunks = []
for idx, words in enumerate(text_toks):
for i in range(0, len(words), word_length):
chunk = words[i : i + word_length]
if (
(i + word_length) > len(words)
and (len(chunk) < word_length)
and (len(text_toks) != (idx + 1))
):
text_toks[idx + 1] = chunk + text_toks[idx + 1]
continue
chunk = " ".join(chunk).strip()
chunk = f"[Page no. {idx+start_page}]" + " " + '"' + chunk + '"'
chunks.append(chunk)
return chunks
class SemanticSearch:
def __init__(self, embedding_model):
self.tokenizer = AutoTokenizer.from_pretrained(f"intfloat/{embedding_model}")
self.model = AutoModel.from_pretrained(
f"intfloat/{embedding_model}",
# cache_dir =,
)
self.model = BetterTransformer.transform(self.model, keep_original_model=True)
# set device
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = self.model.to(self.device)
self.fitted = False
def fit(self, data, batch_size=32, n_neighbors=5):
self.data = data
self.embeddings = self.get_text_embedding(self.data, batch_size=batch_size)
self.fitted = True
def __call__(self, text, return_data=True):
self.inp_emb = self.get_text_embedding([text], prefix="query")
self.matches = self.run_svm(self.inp_emb, self.embeddings)
if return_data:
# return 5 first match, first index is query, so it has to be skipped
return [self.data[i - 1] for i in self.matches[1:6]]
else:
return self.matches
def average_pool(
self, last_hidden_states: Tensor, attention_mask: Tensor
) -> Tensor:
self.last_hidden = last_hidden_states.masked_fill(
~attention_mask[..., None].bool(), 0.0
)
return self.last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
def get_text_embedding(self, texts, prefix="passage", batch_size=32):
# Tokenize the input texts
texts = [f"{prefix}: {text}" for text in texts]
batch_dict = self.tokenizer(
texts, max_length=512, padding=True, truncation=True, return_tensors="pt"
).to(self.device)
with torch.no_grad():
outputs = self.model(**batch_dict)
embeddings = self.average_pool(
outputs.last_hidden_state, batch_dict["attention_mask"]
)
# Normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
# Convert pytorch tensor to numpy array (no grad)
if self.device == "cuda":
embeddings = embeddings.detach().cpu().clone().numpy()
else:
embeddings = embeddings.detach().numpy()
return embeddings
def run_svm(self, query_emb, passage_emb):
joined_emb = np.concatenate((query_emb, passage_emb))
# create var for SVM label
y = np.zeros(joined_emb.shape[0])
# mark query as a positive example
y[0] = 1
# declare SVM
clf = svm.LinearSVC(
class_weight="balanced", verbose=False, max_iter=10000, tol=1e-6, C=0.1
)
# train (Exemplar) SVM
clf.fit(joined_emb, y)
# infer on original data
similarities = clf.decision_function(joined_emb)
sorted_ix = np.argsort(-similarities)
return sorted_ix
def summarize(self):
n_clusters = int(np.ceil(len(self.embeddings)**0.5))
# max cluster 5 (reserve token)
n_clusters = n_clusters if n_clusters <= 5 else 5
kmeans = KMeans(n_clusters=n_clusters, random_state=23)
kmeans = kmeans.fit(self.embeddings)
avg = []
closest = []
for j in range(n_clusters):
# find first chunk index of every cluster
idx = np.where(kmeans.labels_ == j)[0]
avg.append(np.mean(idx))
# find chunk that is closest to the centroid
closest, _ = pairwise_distances_argmin_min(kmeans.cluster_centers_,
self.embeddings)
ordering = sorted(range(n_clusters), key=lambda k: avg[k])
# concat representative chunks
summary = [self.data[i] for i in [closest[idx] for idx in ordering]]
return summary
def clear_cache():
global recommender
if "recommender" in globals():
del recommender
gc.collect()
if torch.cuda.is_available():
return torch.cuda.empty_cache()
def load_recommender(path, embedding_model, rebuild_embedding, start_page=1):
global recommender
if rebuild_embedding:
clear_cache()
recommender = None
if recommender is None:
recommender = SemanticSearch(embedding_model)
if recommender.fitted:
return "Corpus Loaded."
else:
texts = pdf_to_text(path, start_page=start_page)
chunks = text_to_chunks(texts, start_page=start_page)
recommender.fit(chunks)
return "Corpus Loaded."
def generate_text(openai_key, prompt, model="gpt-3.5-turbo"):
openai.api_key = openai_key
completions = openai.ChatCompletion.create(
model=model,
messages=[{"role": "user", "content": prompt}],
max_tokens=512,
n=1,
stop=None,
temperature=0.7,
)
message = f"{prompt}###{completions.choices[0].message.content}###{completions.usage.total_tokens}###{completions.model}"
return message
def generate_answer(question, gpt_model, openai_key):
topn_chunks = recommender(question)
prompt = ""
prompt += "search results:\n\n"
for c in topn_chunks:
prompt += c + "\n\n"
prompt += (
"Instructions: Compose a comprehensive reply to the query using the search results given. "
"Cite each reference using [ Page Number] notation (every result has this number at the beginning). "
"Citation should be done at the end of each sentence. If the search results mention multiple subjects "
"with the same name, create separate answers for each. Only include information found in the results and "
"don't add any additional information. Make sure the answer is correct and don't output false content. "
"If the text does not relate to the query, simply state 'Text Not Found in PDF'. Ignore outlier "
"search results which has nothing to do with the question. Only answer what is asked. The "
"answer should be short and concise. Answer step-by-step.\n\n"
)
prompt += f"Query: {question}"
answer = generate_text(openai_key, prompt, gpt_model)
return answer
def generate_summary(gpt_model, openai_key):
topn_chunks = recommender.summarize()
prompt = ""
prompt += (
"Summarize the highlights of the search results and output a summary in bulletpoints. "
"Do not write anything before the bulletpoints. "
"Cite each reference using [Page no.] notation (every result has this number at the beginning). "
"Citation should be done at the end of each sentence. "
"Give conclusion in the end. "
"Write summary in the same language as the search results. "
"Search results:\n\n"
)
for c in topn_chunks:
prompt += c + "\n\n"
summary = generate_text(openai_key, prompt, gpt_model)
return summary
def load_openai_key() -> str:
key = os.environ.get("OPENAI_API_KEY")
if key is None:
raise ValueError(
"[ERROR]: Please pass your OPENAI_API_KEY. Get your key here : https://platform.openai.com/account/api-keys"
)
return key
# %%
@serving
def ask_url(
url: str,
question: str,
rebuild_embedding: bool,
embedding_model: str,
gpt_model: str,
) -> str:
if rebuild_embedding:
load_url(url, embedding_model, rebuild_embedding)
openai_key = load_openai_key()
return generate_answer(question, gpt_model, openai_key)
@serving
async def ask_file(
file: UploadFile,
question: str,
rebuild_embedding: bool,
embedding_model: str,
gpt_model: str,
) -> str:
if rebuild_embedding:
load_file(file, embedding_model, rebuild_embedding)
openai_key = load_openai_key()
return generate_answer(question, gpt_model, openai_key)
@serving
def load_url(url: str,
embedding_model: str,
rebuild_embedding: bool,
gpt_model: str
) -> str:
download_pdf(url, "corpus.pdf")
notification = load_recommender("corpus.pdf", embedding_model, rebuild_embedding)
openai_key = load_openai_key()
summary = generate_summary(gpt_model, openai_key)
response = f"{notification}###{summary}"
return response
@serving
async def load_file(
file: UploadFile,
embedding_model: str,
rebuild_embedding: bool,
gpt_model: str
) -> str:
suffix = Path(file.filename).suffix
with NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
shutil.copyfileobj(file.file, tmp)
tmp_path = Path(tmp.name)
notification = load_recommender(str(tmp_path), embedding_model, rebuild_embedding)
openai_key = load_openai_key()
summary = generate_summary(gpt_model, openai_key)
response = f"{notification}###{summary}"
return response