pdfGPT-chat / app.py
mphycx
Push large file
d3c3946
raw
history blame
13.5 kB
# %%
import os
import json
import urllib.parse
from tempfile import _TemporaryFileWrapper
import pandas as pd
import requests
import streamlit as st
from streamlit_chat import message
from streamlit_extras.add_vertical_space import add_vertical_space
from streamlit_extras.colored_header import colored_header
st.set_page_config(
layout="wide",
page_title="pdfGPT-chat. Ask your PDF!",
page_icon=":robot_face:",
)
def main():
@st.cache_data
def convert_df(df):
return df.to_csv(index=False).encode("utf-8")
def pdf_change():
st.session_state["pdf_change"] = True
def check_api(api_key):
return api_key.startswith("sk-") and len(api_key) == 51
def check_url(url):
parsed_url = urllib.parse.urlparse(url)
return all([parsed_url.scheme, parsed_url.netloc])
def result_to_dict(r, start):
result = r.json()["result"]
result = result.split("###")[start:]
keys = ["prompt", "answer", "token_used", "gpt_model"]
# Error in OpenAI server also gives status_code 200
if len(result) >= 0:
result.extend([result, 0, gpt_model])
return dict(zip(keys, result))
def load_pdf():
if file is None and len(pdf_url) == 0:
return st.error("Both URL and PDF is empty. Provide at least one.")
elif len(pdf_url) > 0:
if not check_url(pdf_url):
return st.error("Please enter valid URL.")
elif file is not None:
return st.error(
"Both URL and PDF is provided. Please provide only one (either URL or PDF)."
)
# load pdf from url
else:
r = requests.post(
f"{LCSERVE_HOST}/load_url",
json={
"url": pdf_url,
"rebuild_embedding": st.session_state["pdf_change"],
"embedding_model": embedding_model,
"gpt_model": gpt_model,
"envs": {
"OPENAI_API_KEY": os.environ.get("OPENAI_API_KEY"),
}
},
)
# load file
else:
_data = {
"rebuild_embedding": st.session_state["pdf_change"],
"embedding_model": embedding_model,
"gpt_model": gpt_model,
"envs": {
"OPENAI_API_KEY": os.environ.get("OPENAI_API_KEY"),
}
}
r = requests.post(
f"{LCSERVE_HOST}/load_file",
params={"input_data": json.dumps(_data)},
files={"file": file},
)
if r.status_code != 200:
if "error" in r.json():
if "message" in r.json()["error"]:
return st.error(r.json()["error"]["message"])
else:
return str(r.json())
elif r.json()["result"].startswith("Corpus Loaded."):
st.session_state["loaded"] = True
st.session_state["pdf_change"] = False
# extract result
result = result_to_dict(r, 1)
# concatenate reply
reply_summary = "Hello there. I'm **pdfGPT-chat**.\nHere is a **summary** of your PDF:\n\n"
reply_summary += result["answer"]
reply_summary += "\n\nDo you have any **question** about your PDF?"
if len(st.session_state["past"]) == 1:
st.session_state["generated"][0] = reply_summary
else:
st.session_state["past"].append("Hi")
st.session_state["generated"].append(reply_summary)
# calculate cost
calculate_cost(result["token_used"], result["gpt_model"])
return st.success("The PDF file has been loaded.")
else:
return st.info(r.json()["result"])
def generate_response(
lcserve_host: str,
url: str,
file: _TemporaryFileWrapper,
question: str,
openai_key: str,
) -> dict:
if question.strip() == "":
return "[ERROR]: Question field is empty"
_data = {
"question": question,
"rebuild_embedding": st.session_state["pdf_change"],
"embedding_model": embedding_model,
"gpt_model": gpt_model,
"envs": {
"OPENAI_API_KEY": os.environ.get("OPENAI_API_KEY"),
},
}
if url.strip() != "":
r = requests.post(
f"{LCSERVE_HOST}/ask_url",
json={"url": url, **_data},
)
else:
r = requests.post(
f"{LCSERVE_HOST}/ask_file",
params={"input_data": json.dumps(_data)},
files={"file": file},
)
if r.status_code != 200:
content = r.content.decode() # Convert bytes to string
with open("langchainlog.txt", "w") as file:
file.write(content)
return f"[ERROR]: {r.text}"
result_dict = result_to_dict(r, 0)
return result_dict
def calculate_cost(token_used, gpt_model):
st.session_state["total_token"] += int(token_used)
if "gpt-3" in gpt_model:
current_cost = st.session_state["total_token"] * 0.002 / 1000
else:
current_cost = st.session_state["total_token"] * 0.06 / 1000
st.session_state["total_cost"] += current_cost
# %%
# main page layout
header = st.container()
welcome_page = st.container()
response_container = st.container()
input_container = st.container()
cost_container = st.container()
load_pdf_popup = st.container()
# sidebar layout
input_details = st.sidebar.container()
preferences = st.sidebar.container()
chat_download = st.sidebar.container()
# %%
# instantiate session states
if "api_key" not in st.session_state:
st.session_state["api_key"] = False
if "generated" not in st.session_state:
st.session_state["generated"] = ["Hello there. I'm pdfGPT-chat. Do you have any question about your PDF?"]
if "loaded" not in st.session_state:
st.session_state["loaded"] = False
if "past" not in st.session_state:
st.session_state["past"] = ["Hi"]
if "pdf_change" not in st.session_state:
st.session_state["pdf_change"] = True
if "total_cost" not in st.session_state:
st.session_state["total_cost"] = 0
if "total_token" not in st.session_state:
st.session_state["total_token"] = 0
# %%
# constants
E5_URL = "https://github.com/microsoft/unilm/tree/master/e5"
EMBEDDING_CHOICES = {
"multilingual-e5-base": "Multilingual-E5 (default)",
"e5-small-v2": "English-E5-small (faster)",
}
GPT_CHOICES = {
"gpt-3.5-turbo": "GPT-3.5-turbo (default)",
"gpt-4": "GPT-4 (smarter, costlier)",
}
LCSERVE_HOST = "http://localhost:8080"
PDFGPT_URL = "https://github.com/bhaskatripathi/pdfGPT"
SIGNATURE = """<style>
.footer {
position: static;
left: 0;
bottom: 0;
width: 100%;
background: rgba(0,0,0,0);
text-align: center;
}
</style>
<div class="footer">
<p style='display: block;
text-align: center;
font-size:14px;
color:darkgray'>Developed with ❤ by asyafiqe</p>
</div>
"""
with header:
st.title(":page_facing_up: pdfGPT-chat")
with st.expander(
"A fork of [pdfGPT](%s) with several improvements. With pdfGPT-chat, you can chat with your PDF files using [**Microsoft E5 Multilingual Text Embeddings**](%s) and **OpenAI**."
% (PDFGPT_URL, E5_URL)
):
st.markdown(
"Compared to other tools, pdfGPT-chat provides **hallucinations-free** response, thanks to its superior embeddings and tailored prompt.<br />The generated responses from pdfGPT-chat include **citations** in square brackets ([]), indicating the **page numbers** where the relevant information is found.<br />This feature not only enhances the credibility of the responses but also aids in swiftly locating the pertinent information within the PDF file.",
unsafe_allow_html=True,
)
colored_header(
label="",
description="",
color_name="blue-40",
)
with preferences:
colored_header(
label="",
description="",
color_name="blue-40",
)
st.write("**Preferences**")
embedding_model = st.selectbox(
"Embedding",
EMBEDDING_CHOICES.keys(),
help="""[Multilingual-E5](%s) supports 100 languages.
E5-small is much faster and suitable for PC without GPU."""
% E5_URL,
on_change=pdf_change,
format_func=lambda x: EMBEDDING_CHOICES[x],
)
gpt_model = st.selectbox(
"GPT Model",
GPT_CHOICES.keys(),
help="For GPT-4 you might have to join the waitlist: https://openai.com/waitlist/gpt-4-api",
format_func=lambda x: GPT_CHOICES[x],
)
# %%
# sidebar
with input_details:
# sidebar
st.title("Input details")
OPENAI_URL = "https://platform.openai.com/account/api-keys"
openai_key = st.text_input(
":key: Enter your OpenAI API key here",
type="password",
help="Get your Open AI API key [here](%s)" % OPENAI_URL,
)
colored_header(
label="",
description="",
color_name="blue-40",
)
pdf_url = st.text_input(
":globe_with_meridians: Enter PDF URL here", on_change=pdf_change
)
st.markdown(
"<h2 style='text-align: center; color: black;'>OR</h2>",
unsafe_allow_html=True,
)
file = st.file_uploader(
":page_facing_up: Upload your PDF/ Research Paper / Book here",
type=["pdf"],
on_change=pdf_change,
)
if st.button("Load PDF"):
st.session_state["loaded"] = True
with st.spinner("Loading PDF"):
with load_pdf_popup:
load_pdf()
# %%
# main tab
if st.session_state["loaded"]:
with input_container:
with st.form(key="input_form", clear_on_submit=True):
user_input = st.text_area("Question:", key="input", height=100)
submit_button = st.form_submit_button(label="Send")
if user_input and submit_button:
with st.spinner("Processing your question"):
response = generate_response(
LCSERVE_HOST,
pdf_url,
file,
user_input,
os.environ.get("OPENAI_API_KEY"),
)
st.session_state.past.append(user_input)
st.session_state.generated.append(response["answer"])
# calculate cost
calculate_cost(response["token_used"], response["gpt_model"])
if not user_input and submit_button:
st.error("Please write your question.")
with response_container:
if st.session_state["generated"]:
for i in range(len(st.session_state["generated"])):
message(
st.session_state["past"][i], is_user=True, key=str(i) + "_user"
)
message(st.session_state["generated"][i], key=str(i))
cost_container.caption(
f"Estimated cost: $ {st.session_state['total_cost']:.4f}"
)
else:
with welcome_page:
st.write("")
st.subheader(
""":arrow_left: To start please fill input details in the sidebar and click **Load PDF**"""
)
# %%
# placed in the end to include the last conversation
with chat_download:
chat_history = pd.DataFrame(
{
"Question": st.session_state["past"],
"Answer": st.session_state["generated"],
}
)
csv = convert_df(chat_history)
st.download_button(
label="Download chat history",
data=csv,
file_name="chat history.csv",
mime="text/csv",
)
add_vertical_space(2)
st.markdown(SIGNATURE, unsafe_allow_html=True)
# %%
# # javascript
#
# # scroll halfway through the page
js = f"""
<script>
function scroll() {{
var textAreas = parent.document.querySelectorAll('section.main');
var halfwayScroll = 0.4 * textAreas[0].scrollHeight; // Calculate halfway scroll position
for (let index = 0; index < textAreas.length; index++) {{
textAreas[index].scrollTop = halfwayScroll; // Set scroll position to halfway
}}
}}
scroll(); // Call the scroll function
</script>
"""
st.components.v1.html(js)
# reduce main top padding
st.markdown(
"<style>div.block-container{padding-top:1.5em;}</style>",
unsafe_allow_html=True,
)
# reduce sidebar top padding
st.markdown(
"<style>.css-ysnqb2.e1g8pov64 {margin-top: -90px;}</style>",
unsafe_allow_html=True,
)
if __name__ == "__main__":
main()