asynchronousai's picture
Update app.py
1ba64f5 verified
import gradio as gr
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.datamodel.pipeline_options import (
AcceleratorDevice,
PdfPipelineOptions,
AcceleratorOptions
)
import spaces
from docling.datamodel.base_models import InputFormat
from marker.converters.pdf import PdfConverter
from marker.models import create_model_dict
from marker.output import text_from_rendered
# Docling
accelerator_options = AcceleratorOptions(
num_threads=8, device=AcceleratorDevice.CPU
)
pipeline_options = PdfPipelineOptions()
pipeline_options.accelerator_options = accelerator_options
pipeline_options.do_ocr = True
pipeline_options.do_table_structure = True
pipeline_options.table_structure_options.do_cell_matching = True
docling_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_options=pipeline_options,
)
}
)
# Marker
marker_converter = PdfConverter(
artifact_dict=create_model_dict(),
)
def convert_document(file, method):
if method == "Docling":
result = docling_converter.convert(file.name)
return result.document.export_to_markdown()
elif method == "Marker":
rendered = marker_converter(file.name)
text, _, images = text_from_rendered(rendered)
return text
else:
return 'unknown method'
with gr.Blocks() as app:
gr.Markdown("# Document Converter")
gr.Markdown("Upload a document, choose the backend, and get the converted text with metadata.")
file_input = gr.File(label="Upload Document")
method_input = gr.Radio(["Docling", "Marker"], label="Choose Conversion Backend")
output_text = gr.Textbox(label="Converted Document")
convert_button = gr.Button("Convert")
convert_button.click(
convert_document,
inputs=[file_input, method_input],
outputs=[output_text]
)
app.launch(debug=True, show_error=True)