Spaces:
Sleeping
Sleeping
File size: 8,262 Bytes
42e8afb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import string
from textsearch import TextSearch
from contractions import contractions_dict, leftovers_dict
ABBREVS = (
"a.m.",
"adm.",
"bros.",
"co.",
"corp.",
"d.c.",
"dr.",
"e.g.",
"gen.",
"gov.",
"i.e.",
"inc.",
"jr.",
"ltd.",
"md.",
"messrs.",
"mo.",
"mont.",
"mr.",
"mrs.",
"ms.",
"p.m.",
"ph.d.",
"rep.",
"rev.",
"sen.",
"st.",
"vs.",
)
class Tokenizer:
def __init__(
self,
handle_http=False,
handle_domains=False,
numbers=True,
combine_punctuation=True,
eol="\n",
currencies=("$",),
protected_words=None,
contractions=True,
language="en",
abbrevs=ABBREVS,
):
# set() set() should fallback to just using __iter__ of automaton for a speedboost
if language != "en" and contractions:
raise ValueError("No contractions known for languages other than English.")
self.contractions = contractions
self.tokenizer = None
self.handle_http = handle_http
self.handle_domains = handle_domains
self.combine_punctuation = combine_punctuation
self.numbers = numbers
self.eol = eol
self.currencies = currencies or []
self.protected_words = protected_words or []
self.abbrevs = abbrevs
self.explain_dict = {}
self.setup()
def setup(self):
self.tokenizer = TextSearch("sensitive", "norm", set(), set())
self.add_base_cases()
self.add_currencies()
self.add_words(self.protected_words)
if self.handle_http:
self.tokenizer.add_http_handler(keep_result=True)
for word in ["http://", "https://", "www."]:
self.explain_dict[
word
] = "regex: when it finds '{}' it will stop after it finds a space.".format(word)
if self.handle_domains:
self.add_domain_handler()
if self.contractions:
if self.contractions == True:
self.contractions = {}
self.contractions.update(contractions_dict)
self.contractions.update(leftovers_dict)
self.add_words(self.contractions)
if self.abbrevs:
self.add_words(self.abbrevs)
def add_words(self, words):
words = words.items() if isinstance(words, dict) else words
if words and isinstance(words, (list, set, tuple)) and isinstance(words[0], str):
words = [(x, x) for x in words]
for x, y in words:
REASON_AS_IS = "protected word: adds word as is, prevents splitting it."
REASON_UPPER = "protected word: adds word uppercased, prevents splitting it."
REASON_TITLE = "protected word: adds word titlecased, prevents splitting it."
self.add(x, y, REASON_AS_IS)
self.add(x.upper(), y.upper(), REASON_UPPER)
if y:
self.add(x[0].upper() + x[1:], y[0].upper() + y[1:], REASON_TITLE)
def add_domain_handler(self):
import re
from tldextract.tldextract import TLD_EXTRACTOR
valid_re = re.compile("^[a-zA-Z.]+$")
tlds = ["." + x for x in TLD_EXTRACTOR.tlds if valid_re.match(x)]
for x in tlds:
self.add(x, x, "Added by domain handler, keeps the token existing.")
def add_base_cases(self):
if self.numbers:
for x in "0123456789":
self.keep(x + ",")
self.keep(x + ".")
# self.tokenizer.add(" !", " ! ")
if self.combine_punctuation:
# combine multiples
R_COMBINE = "combine punctuation: merges '{}' into '{}' and starts a new sentence."
for s in "!.?-":
for i in range(2, 10):
# one of these is a splitting char
if i == 1 and s == "-":
continue
c = s * i
e = s * 3 if i > 1 else s
# end = "$<EOS>$" if i == 1 or s != "-" else " "
end = " \n" if i == 1 or s != "-" else " "
self.add(c, " {}{}".format(e, end), R_COMBINE.format(c, e + end))
for i in range(2, 10):
# self.tokenizer.add("\n" * i, "$<EOS>$")
self.add("\n" * i, " \n ", "merges newlines")
for s in "!.?-\n":
self.add(s, " " + s + "\n", "Splits on '{}' and creating a new sentence.".format(s))
self.split("- ")
self.split("...")
# does not work
# self.tokenizer.add_regex_handler(["!?"], "[!]+[?]+[!?]+", True, return_value=" !? ")
self.split("!?")
self.split("!?!")
self.split("!!?")
self.split("!??")
self.split("?!!")
self.split("?!?")
self.split("??!")
for x in string.ascii_letters:
self.keep(" " + x + ".")
# for x in string.ascii_letters:
# self.tokenizer.add("\n" + x, "\n" + x)
for s in ":;,":
self.split(s, "Splits on '{}' (punctuation)")
# quotes (make sure we add all the exeptions)
self.split("'")
self.split('"')
def keep(self, x, reason=None):
""" Whenever it finds x, it will not add whitespace. Prevents direct tokenization. """
self.tokenizer.add(x, x)
self.explain_dict[x] = reason or "keep:" + self.keep.__doc__.replace("x", repr(x)).rstrip()
def split(self, x, reason=None):
""" Whenever it finds x, it will surround it by whitespace, thus creating a token. """
self.tokenizer.add(x, " {} ".format(x))
self.explain_dict[x] = (
reason or "split:" + self.split.__doc__.replace("x", repr(x)).rstrip()
)
def drop(self, x, reason=None):
""" Whenever it finds x, it will remove it but add a split."""
self.tokenizer.add(x, " ")
self.explain_dict[x] = reason or "drop:" + self.drop.__doc__.replace("x", repr(x)).rstrip()
def strip(self, x, reason=None):
""" Whenever it finds x, it will remove it without splitting. """
self.tokenizer.add(x, "")
self.explain_dict[x] = (
reason or "strip:" + self.strip.__doc__.replace("x", repr(x)).rstrip()
)
def add(self, x, y, reason):
self.tokenizer.add(x, y)
self.explain_dict[x] = reason
def explain(self, char_or_chars):
keys = [x for x in self.tokenizer._root_dict if char_or_chars in x]
if not keys:
return {
"explanation": "No explanation, meaning there is nothing specified for the input"
}
return [
{"from": x, "to": self.tokenizer._root_dict[x], "explanation": self.explain_dict[x]}
for x in keys
]
def remove(self, x):
if x in self.tokenizer:
self.tokenizer.remove(x)
del self.explain_dict[x]
def add_currencies(self):
for currency in self.currencies:
self.split(currency)
for num in "0123456789":
# to prevent the . and , from being treated as punct
for punc in ",.":
s = "{currency}{num}{punc}".format(currency=currency, num=num, punc=punc)
r = " {currency} {num}{punc}".format(currency=currency, num=num, punc=punc)
self.add(s, r, "protecting currency from being seen as a number.")
def word_tokenize(self, z, return_entities=False, to_lower=False):
if return_entities:
a, b = self.tokenizer.replace(" " + z, return_entities=True)
return a.split(), b
res = self.tokenizer.replace(" " + z).split()
if to_lower:
res = [x.lower() for x in res]
return res
def word_newlined_tokenize(self, z):
sentences = self.sent_tokenize(z)
return sum([x + ["\n"] for x in sentences[:-1]], []) + sentences[-1]
def sent_tokenize(self, z):
return [x.split() for x in self.tokenizer.replace(z).split("\n") if x.strip()]
t = Tokenizer(handle_http=True, handle_domains=False)
word_tokenize = t.word_tokenize
sent_tokenize = t.sent_tokenize |