asynchronousai's picture
Update app.py
f621a6c verified
raw
history blame
2.76 kB
import gradio as gr
import io
import numpy as np
# Trie
class TrieNode:
def __init__(self):
self.children = {}
self.is_end_of_token = False
class Trie:
def __init__(self):
self.root = TrieNode()
def insert(self, token):
node = self.root
for char in token:
if char not in node.children:
node.children[char] = TrieNode()
node = node.children[char]
node.is_end_of_token = True
def search_longest_prefix(self, text, start):
node = self.root
longest_match = None
current_pos = start
while current_pos < len(text) and text[current_pos] in node.children:
node = node.children[text[current_pos]]
if node.is_end_of_token:
longest_match = current_pos
current_pos += 1
return longest_match
# Vector Loader
def load_vectors(fname):
fin = io.open(fname, 'r', encoding='utf-8', newline='\n', errors='ignore')
data = {}
for line in fin:
tokens = line.rstrip().split(' ')
data[tokens[0]] = np.array(list(map(float, tokens[1:]))) # Convert to NumPy array
del fin
return data, sorted(data.keys(), key=len, reverse=True)
vectors, sorted_vector = load_vectors('wiki-news-300d-1M.vec')
# Tokenizer
def tokenize(text):
trie = Trie()
for token in sorted_vector:
trie.insert(token)
result = []
start = 0
while start < len(text):
longest_match = trie.search_longest_prefix(text, start)
if longest_match is not None:
result.append(text[start:longest_match+1])
start = longest_match + 1
else:
start += 1
return result
# Interface
def onInput(paragraph, progress = gr.Progress()):
progress(0, "Tokenizing...")
tokens = tokenize(paragraph)
progress(0.1, "Initializing merged vector...")
if not tokens: # Handle case with no tokens found
return np.zeros(300).tolist() # Return a zero vector of appropriate dimension
merged_vector = np.zeros(300) # Assuming vectors are 300-dimensional
# Merge vectors using NumPy
totalTokens = len(tokens)
for ind, token in enumerate(tokens):
completion = 0.7*((ind+1)/totalTokens)
progress(0.1 + completion, f"Merging {token}, Token #{tokens.index(token)+1}/{len(tokens)}")
vector = vectors[token]
merged_vector += vector
# Normalize
progress(0.9, "Normalizing...")
merged_vector /= len(tokens)
progress(1, "Converting to list...")
return merged_vector.tolist() # Convert back to list for output
demo = gr.Interface(fn=onInput, inputs="text", outputs="text")
demo.launch()