asynchronousai's picture
Update app.py
55601de verified
raw
history blame
1.64 kB
import gradio as gr
import io
import numpy as np
from tok import Tokenizer
# Vector Loader
def load_vectors(fname):
fin = io.open(fname, 'r', encoding='utf-8', newline='\n', errors='ignore')
data = {}
for line in fin:
tokens = line.rstrip().split(' ')
data[tokens[0]] = np.array(list(map(float, tokens[1:]))) # Convert to NumPy array
del fin
return data, sorted(data.keys(), key=len, reverse=True)
vectors, sorted_vector = load_vectors('wiki-news-300d-1M.vec')
# Tokenizer
tokenizer = Tokenizer(protected_words=sorted_vector)
def tokenize(text):
return tokenizer.word_tokenize(text)
# Interface
def onInput(paragraph, progress = gr.Progress()):
progress(0, "Tokenizing...")
tokens = tokenize(paragraph)
progress(0.1, "Initializing merged vector...")
if not tokens: # Handle case with no tokens found
return np.zeros(300).tolist() # Return a zero vector of appropriate dimension
merged_vector = np.zeros(300) # Assuming vectors are 300-dimensional
# Merge vectors using NumPy
totalTokens = len(tokens)
for ind, token in enumerate(tokens):
completion = 0.7*((ind+1)/totalTokens)
progress(0.1 + completion, f"Merging {token}, Token #{tokens.index(token)+1}/{len(tokens)}")
vector = vectors[token]
merged_vector += vector
# Normalize
progress(0.9, "Normalizing...")
merged_vector /= len(tokens)
progress(1, "Converting to list...")
return merged_vector.tolist() # Convert back to list for output
demo = gr.Interface(fn=onInput, inputs="text", outputs="text")
demo.launch()