asynchronousai's picture
Update app.py
e96c4ee verified
raw
history blame
1.91 kB
import gradio as gr
import io
import numpy as np
import ctypes
# Vector Loader
def load_vectors(fname):
fin = io.open(fname, 'r', encoding='utf-8', newline='\n', errors='ignore')
data = {}
for line in fin:
tokens = line.rstrip().split(' ')
data[tokens[0]] = np.array(list(map(float, tokens[1:]))) # Convert to NumPy array
del fin
return data
vectors = load_vectors('wiki-news-300d-1M.vec')
tokens = [token.encode('utf-8') for token in vectors.keys()]
# Tokenizer
lib = ctypes.CDLL('./tokenizer.so')
lib.tokenize.argtypes = [ctypes.c_char_p, ctypes.POINTER(ctypes.c_char_p), ctypes.c_int, ctypes.POINTER(ctypes.c_int)]
lib.tokenize.restype = ctypes.POINTER(ctypes.c_char_p)
def tokenize(text):
text = text.encode('utf-8')
num_tokens = len(tokens)
tokens_array = (ctypes.c_char_p * num_tokens)(*tokens)
result_size = ctypes.c_int()
result = lib.tokenize(text, tokens_array, num_tokens, ctypes.byref(result_size))
python_tokens = [result[i].decode('utf-8') for i in range(result_size.value)]
lib.free_tokens(result, result_size.value)
return python_tokens
# Interface
def onInput(paragraph):
tokens = tokenize(paragraph)
if not tokens: # Handle case with no tokens found
return np.zeros(300).tolist() # Return a zero vector of appropriate dimension
merged_vector = np.zeros(300) # Assuming vectors are 300-dimensional
# Merge vectors using NumPy
totalTokens = len(tokens)
for ind, token in enumerate(tokens):
completion = 0.2*((ind+1)/totalTokens)
if token not in vectors:
continue
vector = vectors[token]
merged_vector += vector
# Normalize
merged_vector /= len(tokens)
return merged_vector.tolist() # Convert back to list for output
demo = gr.Interface(fn=onInput, inputs="text", outputs="text")
demo.launch()