Spaces:
Sleeping
Sleeping
from vectordb import Memory | |
import gradio as gr | |
import json | |
import numpy as np | |
class CustomEncoder(json.JSONEncoder): | |
def default(self, obj): | |
if isinstance(obj, np.float32): | |
return float(obj) # Convert float32 to native float | |
return super().default(obj) | |
def process_json(json_input): | |
try: | |
input = json.loads(json_input) | |
memory = Memory()#embedding_model="TaylorAI/bge-micro-v2") | |
memory.save(input['terms'], input['metadata']) | |
results = memory.search(input['prompt'], top_n=input['topN']) | |
return json.dumps(results, indent=4, cls=CustomEncoder) | |
except json.JSONDecodeError: | |
return "Invalid JSON input." | |
with gr.Blocks() as demo: | |
gr.Markdown("## *VectorDB* based Paragraph Embedder") | |
input_json = gr.Textbox(label="Input", lines=10, placeholder='{"topN": 5, "prompt": "yellow", "metadata": [], "terms": ["banana", "blueberry", "apple"]}') | |
output_json = gr.Textbox(label="Output", lines=10, interactive=False) | |
process_button = gr.Button("Process") | |
process_button.click(process_json, inputs=input_json, outputs=output_json) | |
# Launch the app | |
demo.launch() | |