File size: 22,911 Bytes
18dd6ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
# Author: thygate
# https://github.com/thygate/stable-diffusion-webui-depthmap-script

from modules import devices
from modules.shared import opts
from torchvision.transforms import transforms
from operator import getitem

import torch, gc
import cv2
import numpy as np
import skimage.measure

whole_size_threshold = 1600  # R_max from the paper
pix2pixsize = 1024

def scale_torch(img):
    """
    Scale the image and output it in torch.tensor.
    :param img: input rgb is in shape [H, W, C], input depth/disp is in shape [H, W]
    :param scale: the scale factor. float
    :return: img. [C, H, W]
    """
    if len(img.shape) == 2:
        img = img[np.newaxis, :, :]
    if img.shape[2] == 3:
        transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406) , (0.229, 0.224, 0.225) )])
        img = transform(img.astype(np.float32))
    else:
        img = img.astype(np.float32)
        img = torch.from_numpy(img)
    return img
    
def estimateleres(img, model, w, h):
    # leres transform input
    rgb_c = img[:, :, ::-1].copy()
    A_resize = cv2.resize(rgb_c, (w, h))
    img_torch = scale_torch(A_resize)[None, :, :, :] 
    
    # compute
    with torch.no_grad():
        img_torch = img_torch.to(devices.get_device_for("controlnet"))
        prediction = model.depth_model(img_torch)

    prediction = prediction.squeeze().cpu().numpy()
    prediction = cv2.resize(prediction, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_CUBIC)

    return prediction

def generatemask(size):
    # Generates a Guassian mask
    mask = np.zeros(size, dtype=np.float32)
    sigma = int(size[0]/16)
    k_size = int(2 * np.ceil(2 * int(size[0]/16)) + 1)
    mask[int(0.15*size[0]):size[0] - int(0.15*size[0]), int(0.15*size[1]): size[1] - int(0.15*size[1])] = 1
    mask = cv2.GaussianBlur(mask, (int(k_size), int(k_size)), sigma)
    mask = (mask - mask.min()) / (mask.max() - mask.min())
    mask = mask.astype(np.float32)
    return mask

def resizewithpool(img, size):
    i_size = img.shape[0]
    n = int(np.floor(i_size/size))

    out = skimage.measure.block_reduce(img, (n, n), np.max)
    return out

def rgb2gray(rgb):
    # Converts rgb to gray
    return np.dot(rgb[..., :3], [0.2989, 0.5870, 0.1140])

def calculateprocessingres(img, basesize, confidence=0.1, scale_threshold=3, whole_size_threshold=3000):
    # Returns the R_x resolution described in section 5 of the main paper.

    # Parameters:
    #    img :input rgb image
    #    basesize : size the dilation kernel which is equal to receptive field of the network.
    #    confidence: value of x in R_x; allowed percentage of pixels that are not getting any contextual cue.
    #    scale_threshold: maximum allowed upscaling on the input image ; it has been set to 3.
    #    whole_size_threshold: maximum allowed resolution. (R_max from section 6 of the main paper)

    # Returns:
    #    outputsize_scale*speed_scale :The computed R_x resolution
    #    patch_scale: K parameter from section 6 of the paper

    # speed scale parameter is to process every image in a smaller size to accelerate the R_x resolution search
    speed_scale = 32
    image_dim = int(min(img.shape[0:2]))

    gray = rgb2gray(img)
    grad = np.abs(cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)) + np.abs(cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3))
    grad = cv2.resize(grad, (image_dim, image_dim), cv2.INTER_AREA)

    # thresholding the gradient map to generate the edge-map as a proxy of the contextual cues
    m = grad.min()
    M = grad.max()
    middle = m + (0.4 * (M - m))
    grad[grad < middle] = 0
    grad[grad >= middle] = 1

    # dilation kernel with size of the receptive field
    kernel = np.ones((int(basesize/speed_scale), int(basesize/speed_scale)), float)
    # dilation kernel with size of the a quarter of receptive field used to compute k
    # as described in section 6 of main paper
    kernel2 = np.ones((int(basesize / (4*speed_scale)), int(basesize / (4*speed_scale))), float)

    # Output resolution limit set by the whole_size_threshold and scale_threshold.
    threshold = min(whole_size_threshold, scale_threshold * max(img.shape[:2]))

    outputsize_scale = basesize / speed_scale
    for p_size in range(int(basesize/speed_scale), int(threshold/speed_scale), int(basesize / (2*speed_scale))):
        grad_resized = resizewithpool(grad, p_size)
        grad_resized = cv2.resize(grad_resized, (p_size, p_size), cv2.INTER_NEAREST)
        grad_resized[grad_resized >= 0.5] = 1
        grad_resized[grad_resized < 0.5] = 0

        dilated = cv2.dilate(grad_resized, kernel, iterations=1)
        meanvalue = (1-dilated).mean()
        if meanvalue > confidence:
            break
        else:
            outputsize_scale = p_size

    grad_region = cv2.dilate(grad_resized, kernel2, iterations=1)
    patch_scale = grad_region.mean()

    return int(outputsize_scale*speed_scale), patch_scale

# Generate a double-input depth estimation
def doubleestimate(img, size1, size2, pix2pixsize, model, net_type, pix2pixmodel):
    # Generate the low resolution estimation
    estimate1 = singleestimate(img, size1, model, net_type)
    # Resize to the inference size of merge network.
    estimate1 = cv2.resize(estimate1, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)

    # Generate the high resolution estimation
    estimate2 = singleestimate(img, size2, model, net_type)
    # Resize to the inference size of merge network.
    estimate2 = cv2.resize(estimate2, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)

    # Inference on the merge model
    pix2pixmodel.set_input(estimate1, estimate2)
    pix2pixmodel.test()
    visuals = pix2pixmodel.get_current_visuals()
    prediction_mapped = visuals['fake_B']
    prediction_mapped = (prediction_mapped+1)/2
    prediction_mapped = (prediction_mapped - torch.min(prediction_mapped)) / (
                torch.max(prediction_mapped) - torch.min(prediction_mapped))
    prediction_mapped = prediction_mapped.squeeze().cpu().numpy()

    return prediction_mapped

# Generate a single-input depth estimation
def singleestimate(img, msize, model, net_type):
    # if net_type == 0:
    return estimateleres(img, model, msize, msize)
    # else:
    # 	return estimatemidasBoost(img, model, msize, msize)

def applyGridpatch(blsize, stride, img, box):
    # Extract a simple grid patch.
    counter1 = 0
    patch_bound_list = {}
    for k in range(blsize, img.shape[1] - blsize, stride):
        for j in range(blsize, img.shape[0] - blsize, stride):
            patch_bound_list[str(counter1)] = {}
            patchbounds = [j - blsize, k - blsize, j - blsize + 2 * blsize, k - blsize + 2 * blsize]
            patch_bound = [box[0] + patchbounds[1], box[1] + patchbounds[0], patchbounds[3] - patchbounds[1],
                           patchbounds[2] - patchbounds[0]]
            patch_bound_list[str(counter1)]['rect'] = patch_bound
            patch_bound_list[str(counter1)]['size'] = patch_bound[2]
            counter1 = counter1 + 1
    return patch_bound_list

# Generating local patches to perform the local refinement described in section 6 of the main paper.
def generatepatchs(img, base_size):
    
    # Compute the gradients as a proxy of the contextual cues.
    img_gray = rgb2gray(img)
    whole_grad = np.abs(cv2.Sobel(img_gray, cv2.CV_64F, 0, 1, ksize=3)) +\
        np.abs(cv2.Sobel(img_gray, cv2.CV_64F, 1, 0, ksize=3))

    threshold = whole_grad[whole_grad > 0].mean()
    whole_grad[whole_grad < threshold] = 0

    # We use the integral image to speed-up the evaluation of the amount of gradients for each patch.
    gf = whole_grad.sum()/len(whole_grad.reshape(-1))
    grad_integral_image = cv2.integral(whole_grad)

    # Variables are selected such that the initial patch size would be the receptive field size
    # and the stride is set to 1/3 of the receptive field size.
    blsize = int(round(base_size/2))
    stride = int(round(blsize*0.75))

    # Get initial Grid
    patch_bound_list = applyGridpatch(blsize, stride, img, [0, 0, 0, 0])

    # Refine initial Grid of patches by discarding the flat (in terms of gradients of the rgb image) ones. Refine
    # each patch size to ensure that there will be enough depth cues for the network to generate a consistent depth map.
    print("Selecting patches ...")
    patch_bound_list = adaptiveselection(grad_integral_image, patch_bound_list, gf)

    # Sort the patch list to make sure the merging operation will be done with the correct order: starting from biggest
    # patch
    patchset = sorted(patch_bound_list.items(), key=lambda x: getitem(x[1], 'size'), reverse=True)
    return patchset

def getGF_fromintegral(integralimage, rect):
    # Computes the gradient density of a given patch from the gradient integral image.
    x1 = rect[1]
    x2 = rect[1]+rect[3]
    y1 = rect[0]
    y2 = rect[0]+rect[2]
    value = integralimage[x2, y2]-integralimage[x1, y2]-integralimage[x2, y1]+integralimage[x1, y1]
    return value

# Adaptively select patches
def adaptiveselection(integral_grad, patch_bound_list, gf):
    patchlist = {}
    count = 0
    height, width = integral_grad.shape

    search_step = int(32/factor)

    # Go through all patches
    for c in range(len(patch_bound_list)):
        # Get patch
        bbox = patch_bound_list[str(c)]['rect']

        # Compute the amount of gradients present in the patch from the integral image.
        cgf = getGF_fromintegral(integral_grad, bbox)/(bbox[2]*bbox[3])

        # Check if patching is beneficial by comparing the gradient density of the patch to
        # the gradient density of the whole image
        if cgf >= gf:
            bbox_test = bbox.copy()
            patchlist[str(count)] = {}

            # Enlarge each patch until the gradient density of the patch is equal
            # to the whole image gradient density
            while True:

                bbox_test[0] = bbox_test[0] - int(search_step/2)
                bbox_test[1] = bbox_test[1] - int(search_step/2)

                bbox_test[2] = bbox_test[2] + search_step
                bbox_test[3] = bbox_test[3] + search_step

                # Check if we are still within the image
                if bbox_test[0] < 0 or bbox_test[1] < 0 or bbox_test[1] + bbox_test[3] >= height \
                        or bbox_test[0] + bbox_test[2] >= width:
                    break

                # Compare gradient density
                cgf = getGF_fromintegral(integral_grad, bbox_test)/(bbox_test[2]*bbox_test[3])
                if cgf < gf:
                    break
                bbox = bbox_test.copy()

            # Add patch to selected patches
            patchlist[str(count)]['rect'] = bbox
            patchlist[str(count)]['size'] = bbox[2]
            count = count + 1
    
    # Return selected patches
    return patchlist

def impatch(image, rect):
    # Extract the given patch pixels from a given image.
    w1 = rect[0]
    h1 = rect[1]
    w2 = w1 + rect[2]
    h2 = h1 + rect[3]
    image_patch = image[h1:h2, w1:w2]
    return image_patch

class ImageandPatchs:
    def __init__(self, root_dir, name, patchsinfo, rgb_image, scale=1):
        self.root_dir = root_dir
        self.patchsinfo = patchsinfo
        self.name = name
        self.patchs = patchsinfo
        self.scale = scale

        self.rgb_image = cv2.resize(rgb_image, (round(rgb_image.shape[1]*scale), round(rgb_image.shape[0]*scale)),
                                    interpolation=cv2.INTER_CUBIC)

        self.do_have_estimate = False
        self.estimation_updated_image = None
        self.estimation_base_image = None

    def __len__(self):
        return len(self.patchs)

    def set_base_estimate(self, est):
        self.estimation_base_image = est
        if self.estimation_updated_image is not None:
            self.do_have_estimate = True

    def set_updated_estimate(self, est):
        self.estimation_updated_image = est
        if self.estimation_base_image is not None:
            self.do_have_estimate = True

    def __getitem__(self, index):
        patch_id = int(self.patchs[index][0])
        rect = np.array(self.patchs[index][1]['rect'])
        msize = self.patchs[index][1]['size']

        ## applying scale to rect:
        rect = np.round(rect * self.scale)
        rect = rect.astype('int')
        msize = round(msize * self.scale)

        patch_rgb = impatch(self.rgb_image, rect)
        if self.do_have_estimate:
            patch_whole_estimate_base = impatch(self.estimation_base_image, rect)
            patch_whole_estimate_updated = impatch(self.estimation_updated_image, rect)
            return {'patch_rgb': patch_rgb, 'patch_whole_estimate_base': patch_whole_estimate_base,
                    'patch_whole_estimate_updated': patch_whole_estimate_updated, 'rect': rect,
                    'size': msize, 'id': patch_id}
        else:
            return {'patch_rgb': patch_rgb, 'rect': rect, 'size': msize, 'id': patch_id}

    def print_options(self, opt):
        """Print and save options

        It will print both current options and default values(if different).
        It will save options into a text file / [checkpoints_dir] / opt.txt
        """
        message = ''
        message += '----------------- Options ---------------\n'
        for k, v in sorted(vars(opt).items()):
            comment = ''
            default = self.parser.get_default(k)
            if v != default:
                comment = '\t[default: %s]' % str(default)
            message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
        message += '----------------- End -------------------'
        print(message)

        # save to the disk
        """
        expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
        util.mkdirs(expr_dir)
        file_name = os.path.join(expr_dir, '{}_opt.txt'.format(opt.phase))
        with open(file_name, 'wt') as opt_file:
            opt_file.write(message)
            opt_file.write('\n')
        """

    def parse(self):
        """Parse our options, create checkpoints directory suffix, and set up gpu device."""
        opt = self.gather_options()
        opt.isTrain = self.isTrain   # train or test

        # process opt.suffix
        if opt.suffix:
            suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else ''
            opt.name = opt.name + suffix

        #self.print_options(opt)

        # set gpu ids
        str_ids = opt.gpu_ids.split(',')
        opt.gpu_ids = []
        for str_id in str_ids:
            id = int(str_id)
            if id >= 0:
                opt.gpu_ids.append(id)
        #if len(opt.gpu_ids) > 0:
        #    torch.cuda.set_device(opt.gpu_ids[0])

        self.opt = opt
        return self.opt


def estimateboost(img, model, model_type, pix2pixmodel, max_res=512):
    global whole_size_threshold
    
    # get settings
    if hasattr(opts, 'depthmap_script_boost_rmax'):
        whole_size_threshold = opts.depthmap_script_boost_rmax
        
    if model_type == 0: #leres
        net_receptive_field_size = 448
        patch_netsize = 2 * net_receptive_field_size
    elif model_type == 1: #dpt_beit_large_512
        net_receptive_field_size = 512
        patch_netsize = 2 * net_receptive_field_size
    else: #other midas
        net_receptive_field_size = 384
        patch_netsize = 2 * net_receptive_field_size

    gc.collect()
    devices.torch_gc()

    # Generate mask used to smoothly blend the local pathc estimations to the base estimate.
    # It is arbitrarily large to avoid artifacts during rescaling for each crop.
    mask_org = generatemask((3000, 3000))
    mask = mask_org.copy()

    # Value x of R_x defined in the section 5 of the main paper.
    r_threshold_value = 0.2
    #if R0:
    #	r_threshold_value = 0

    input_resolution = img.shape
    scale_threshold = 3  # Allows up-scaling with a scale up to 3

    # Find the best input resolution R-x. The resolution search described in section 5-double estimation of the main paper and section B of the
    # supplementary material.
    whole_image_optimal_size, patch_scale = calculateprocessingres(img, net_receptive_field_size, r_threshold_value, scale_threshold, whole_size_threshold)

    # print('wholeImage being processed in :', whole_image_optimal_size)

    # Generate the base estimate using the double estimation.
    whole_estimate = doubleestimate(img, net_receptive_field_size, whole_image_optimal_size, pix2pixsize, model, model_type, pix2pixmodel)

    # Compute the multiplier described in section 6 of the main paper to make sure our initial patch can select
    # small high-density regions of the image.
    global factor
    factor = max(min(1, 4 * patch_scale * whole_image_optimal_size / whole_size_threshold), 0.2)
    # print('Adjust factor is:', 1/factor)
        
    # Check if Local boosting is beneficial.
    if max_res < whole_image_optimal_size:
        # print("No Local boosting. Specified Max Res is smaller than R20, Returning doubleestimate result")
        return cv2.resize(whole_estimate, (input_resolution[1], input_resolution[0]), interpolation=cv2.INTER_CUBIC)

    # Compute the default target resolution.
    if img.shape[0] > img.shape[1]:
        a = 2 * whole_image_optimal_size
        b = round(2 * whole_image_optimal_size * img.shape[1] / img.shape[0])
    else:
        a = round(2 * whole_image_optimal_size * img.shape[0] / img.shape[1])
        b = 2 * whole_image_optimal_size
    b = int(round(b / factor))
    a = int(round(a / factor))

    """
    # recompute a, b and saturate to max res.
    if max(a,b) > max_res:
        print('Default Res is higher than max-res: Reducing final resolution')
        if img.shape[0] > img.shape[1]:
            a = max_res
            b = round(max_res * img.shape[1] / img.shape[0])
        else:
            a = round(max_res * img.shape[0] / img.shape[1])
            b = max_res
        b = int(b)
        a = int(a)
    """

    img = cv2.resize(img, (b, a), interpolation=cv2.INTER_CUBIC)

    # Extract selected patches for local refinement
    base_size = net_receptive_field_size * 2
    patchset = generatepatchs(img, base_size)

    # print('Target resolution: ', img.shape)

    # Computing a scale in case user prompted to generate the results as the same resolution of the input.
    # Notice that our method output resolution is independent of the input resolution and this parameter will only
    # enable a scaling operation during the local patch merge implementation to generate results with the same resolution
    # as the input.
    """
    if output_resolution == 1:
        mergein_scale = input_resolution[0] / img.shape[0]
        print('Dynamicly change merged-in resolution; scale:', mergein_scale)
    else:
        mergein_scale = 1
    """
    # always rescale to input res for now
    mergein_scale = input_resolution[0] / img.shape[0]

    imageandpatchs = ImageandPatchs('', '', patchset, img, mergein_scale)
    whole_estimate_resized = cv2.resize(whole_estimate, (round(img.shape[1]*mergein_scale),
                                        round(img.shape[0]*mergein_scale)), interpolation=cv2.INTER_CUBIC)
    imageandpatchs.set_base_estimate(whole_estimate_resized.copy())
    imageandpatchs.set_updated_estimate(whole_estimate_resized.copy())

    print('Resulting depthmap resolution will be :', whole_estimate_resized.shape[:2])
    print('Patches to process: '+str(len(imageandpatchs)))

    # Enumerate through all patches, generate their estimations and refining the base estimate.
    for patch_ind in range(len(imageandpatchs)):
        
        # Get patch information
        patch = imageandpatchs[patch_ind] # patch object
        patch_rgb = patch['patch_rgb'] # rgb patch
        patch_whole_estimate_base = patch['patch_whole_estimate_base'] # corresponding patch from base
        rect = patch['rect'] # patch size and location
        patch_id = patch['id'] # patch ID
        org_size = patch_whole_estimate_base.shape # the original size from the unscaled input
        print('\t Processing patch', patch_ind, '/', len(imageandpatchs)-1, '|', rect)

        # We apply double estimation for patches. The high resolution value is fixed to twice the receptive
        # field size of the network for patches to accelerate the process.
        patch_estimation = doubleestimate(patch_rgb, net_receptive_field_size, patch_netsize, pix2pixsize, model, model_type, pix2pixmodel)
        patch_estimation = cv2.resize(patch_estimation, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
        patch_whole_estimate_base = cv2.resize(patch_whole_estimate_base, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)

        # Merging the patch estimation into the base estimate using our merge network:
        # We feed the patch estimation and the same region from the updated base estimate to the merge network
        # to generate the target estimate for the corresponding region.
        pix2pixmodel.set_input(patch_whole_estimate_base, patch_estimation)

        # Run merging network
        pix2pixmodel.test()
        visuals = pix2pixmodel.get_current_visuals()

        prediction_mapped = visuals['fake_B']
        prediction_mapped = (prediction_mapped+1)/2
        prediction_mapped = prediction_mapped.squeeze().cpu().numpy()

        mapped = prediction_mapped

        # We use a simple linear polynomial to make sure the result of the merge network would match the values of
        # base estimate
        p_coef = np.polyfit(mapped.reshape(-1), patch_whole_estimate_base.reshape(-1), deg=1)
        merged = np.polyval(p_coef, mapped.reshape(-1)).reshape(mapped.shape)

        merged = cv2.resize(merged, (org_size[1],org_size[0]), interpolation=cv2.INTER_CUBIC)

        # Get patch size and location
        w1 = rect[0]
        h1 = rect[1]
        w2 = w1 + rect[2]
        h2 = h1 + rect[3]

        # To speed up the implementation, we only generate the Gaussian mask once with a sufficiently large size
        # and resize it to our needed size while merging the patches.
        if mask.shape != org_size:
            mask = cv2.resize(mask_org, (org_size[1],org_size[0]), interpolation=cv2.INTER_LINEAR)

        tobemergedto = imageandpatchs.estimation_updated_image

        # Update the whole estimation:
        # We use a simple Gaussian mask to blend the merged patch region with the base estimate to ensure seamless
        # blending at the boundaries of the patch region.
        tobemergedto[h1:h2, w1:w2] = np.multiply(tobemergedto[h1:h2, w1:w2], 1 - mask) + np.multiply(merged, mask)
        imageandpatchs.set_updated_estimate(tobemergedto)

    # output
    return cv2.resize(imageandpatchs.estimation_updated_image, (input_resolution[1], input_resolution[0]), interpolation=cv2.INTER_CUBIC)