File size: 22,911 Bytes
18dd6ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
# Author: thygate
# https://github.com/thygate/stable-diffusion-webui-depthmap-script
from modules import devices
from modules.shared import opts
from torchvision.transforms import transforms
from operator import getitem
import torch, gc
import cv2
import numpy as np
import skimage.measure
whole_size_threshold = 1600 # R_max from the paper
pix2pixsize = 1024
def scale_torch(img):
"""
Scale the image and output it in torch.tensor.
:param img: input rgb is in shape [H, W, C], input depth/disp is in shape [H, W]
:param scale: the scale factor. float
:return: img. [C, H, W]
"""
if len(img.shape) == 2:
img = img[np.newaxis, :, :]
if img.shape[2] == 3:
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406) , (0.229, 0.224, 0.225) )])
img = transform(img.astype(np.float32))
else:
img = img.astype(np.float32)
img = torch.from_numpy(img)
return img
def estimateleres(img, model, w, h):
# leres transform input
rgb_c = img[:, :, ::-1].copy()
A_resize = cv2.resize(rgb_c, (w, h))
img_torch = scale_torch(A_resize)[None, :, :, :]
# compute
with torch.no_grad():
img_torch = img_torch.to(devices.get_device_for("controlnet"))
prediction = model.depth_model(img_torch)
prediction = prediction.squeeze().cpu().numpy()
prediction = cv2.resize(prediction, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_CUBIC)
return prediction
def generatemask(size):
# Generates a Guassian mask
mask = np.zeros(size, dtype=np.float32)
sigma = int(size[0]/16)
k_size = int(2 * np.ceil(2 * int(size[0]/16)) + 1)
mask[int(0.15*size[0]):size[0] - int(0.15*size[0]), int(0.15*size[1]): size[1] - int(0.15*size[1])] = 1
mask = cv2.GaussianBlur(mask, (int(k_size), int(k_size)), sigma)
mask = (mask - mask.min()) / (mask.max() - mask.min())
mask = mask.astype(np.float32)
return mask
def resizewithpool(img, size):
i_size = img.shape[0]
n = int(np.floor(i_size/size))
out = skimage.measure.block_reduce(img, (n, n), np.max)
return out
def rgb2gray(rgb):
# Converts rgb to gray
return np.dot(rgb[..., :3], [0.2989, 0.5870, 0.1140])
def calculateprocessingres(img, basesize, confidence=0.1, scale_threshold=3, whole_size_threshold=3000):
# Returns the R_x resolution described in section 5 of the main paper.
# Parameters:
# img :input rgb image
# basesize : size the dilation kernel which is equal to receptive field of the network.
# confidence: value of x in R_x; allowed percentage of pixels that are not getting any contextual cue.
# scale_threshold: maximum allowed upscaling on the input image ; it has been set to 3.
# whole_size_threshold: maximum allowed resolution. (R_max from section 6 of the main paper)
# Returns:
# outputsize_scale*speed_scale :The computed R_x resolution
# patch_scale: K parameter from section 6 of the paper
# speed scale parameter is to process every image in a smaller size to accelerate the R_x resolution search
speed_scale = 32
image_dim = int(min(img.shape[0:2]))
gray = rgb2gray(img)
grad = np.abs(cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)) + np.abs(cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3))
grad = cv2.resize(grad, (image_dim, image_dim), cv2.INTER_AREA)
# thresholding the gradient map to generate the edge-map as a proxy of the contextual cues
m = grad.min()
M = grad.max()
middle = m + (0.4 * (M - m))
grad[grad < middle] = 0
grad[grad >= middle] = 1
# dilation kernel with size of the receptive field
kernel = np.ones((int(basesize/speed_scale), int(basesize/speed_scale)), float)
# dilation kernel with size of the a quarter of receptive field used to compute k
# as described in section 6 of main paper
kernel2 = np.ones((int(basesize / (4*speed_scale)), int(basesize / (4*speed_scale))), float)
# Output resolution limit set by the whole_size_threshold and scale_threshold.
threshold = min(whole_size_threshold, scale_threshold * max(img.shape[:2]))
outputsize_scale = basesize / speed_scale
for p_size in range(int(basesize/speed_scale), int(threshold/speed_scale), int(basesize / (2*speed_scale))):
grad_resized = resizewithpool(grad, p_size)
grad_resized = cv2.resize(grad_resized, (p_size, p_size), cv2.INTER_NEAREST)
grad_resized[grad_resized >= 0.5] = 1
grad_resized[grad_resized < 0.5] = 0
dilated = cv2.dilate(grad_resized, kernel, iterations=1)
meanvalue = (1-dilated).mean()
if meanvalue > confidence:
break
else:
outputsize_scale = p_size
grad_region = cv2.dilate(grad_resized, kernel2, iterations=1)
patch_scale = grad_region.mean()
return int(outputsize_scale*speed_scale), patch_scale
# Generate a double-input depth estimation
def doubleestimate(img, size1, size2, pix2pixsize, model, net_type, pix2pixmodel):
# Generate the low resolution estimation
estimate1 = singleestimate(img, size1, model, net_type)
# Resize to the inference size of merge network.
estimate1 = cv2.resize(estimate1, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
# Generate the high resolution estimation
estimate2 = singleestimate(img, size2, model, net_type)
# Resize to the inference size of merge network.
estimate2 = cv2.resize(estimate2, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
# Inference on the merge model
pix2pixmodel.set_input(estimate1, estimate2)
pix2pixmodel.test()
visuals = pix2pixmodel.get_current_visuals()
prediction_mapped = visuals['fake_B']
prediction_mapped = (prediction_mapped+1)/2
prediction_mapped = (prediction_mapped - torch.min(prediction_mapped)) / (
torch.max(prediction_mapped) - torch.min(prediction_mapped))
prediction_mapped = prediction_mapped.squeeze().cpu().numpy()
return prediction_mapped
# Generate a single-input depth estimation
def singleestimate(img, msize, model, net_type):
# if net_type == 0:
return estimateleres(img, model, msize, msize)
# else:
# return estimatemidasBoost(img, model, msize, msize)
def applyGridpatch(blsize, stride, img, box):
# Extract a simple grid patch.
counter1 = 0
patch_bound_list = {}
for k in range(blsize, img.shape[1] - blsize, stride):
for j in range(blsize, img.shape[0] - blsize, stride):
patch_bound_list[str(counter1)] = {}
patchbounds = [j - blsize, k - blsize, j - blsize + 2 * blsize, k - blsize + 2 * blsize]
patch_bound = [box[0] + patchbounds[1], box[1] + patchbounds[0], patchbounds[3] - patchbounds[1],
patchbounds[2] - patchbounds[0]]
patch_bound_list[str(counter1)]['rect'] = patch_bound
patch_bound_list[str(counter1)]['size'] = patch_bound[2]
counter1 = counter1 + 1
return patch_bound_list
# Generating local patches to perform the local refinement described in section 6 of the main paper.
def generatepatchs(img, base_size):
# Compute the gradients as a proxy of the contextual cues.
img_gray = rgb2gray(img)
whole_grad = np.abs(cv2.Sobel(img_gray, cv2.CV_64F, 0, 1, ksize=3)) +\
np.abs(cv2.Sobel(img_gray, cv2.CV_64F, 1, 0, ksize=3))
threshold = whole_grad[whole_grad > 0].mean()
whole_grad[whole_grad < threshold] = 0
# We use the integral image to speed-up the evaluation of the amount of gradients for each patch.
gf = whole_grad.sum()/len(whole_grad.reshape(-1))
grad_integral_image = cv2.integral(whole_grad)
# Variables are selected such that the initial patch size would be the receptive field size
# and the stride is set to 1/3 of the receptive field size.
blsize = int(round(base_size/2))
stride = int(round(blsize*0.75))
# Get initial Grid
patch_bound_list = applyGridpatch(blsize, stride, img, [0, 0, 0, 0])
# Refine initial Grid of patches by discarding the flat (in terms of gradients of the rgb image) ones. Refine
# each patch size to ensure that there will be enough depth cues for the network to generate a consistent depth map.
print("Selecting patches ...")
patch_bound_list = adaptiveselection(grad_integral_image, patch_bound_list, gf)
# Sort the patch list to make sure the merging operation will be done with the correct order: starting from biggest
# patch
patchset = sorted(patch_bound_list.items(), key=lambda x: getitem(x[1], 'size'), reverse=True)
return patchset
def getGF_fromintegral(integralimage, rect):
# Computes the gradient density of a given patch from the gradient integral image.
x1 = rect[1]
x2 = rect[1]+rect[3]
y1 = rect[0]
y2 = rect[0]+rect[2]
value = integralimage[x2, y2]-integralimage[x1, y2]-integralimage[x2, y1]+integralimage[x1, y1]
return value
# Adaptively select patches
def adaptiveselection(integral_grad, patch_bound_list, gf):
patchlist = {}
count = 0
height, width = integral_grad.shape
search_step = int(32/factor)
# Go through all patches
for c in range(len(patch_bound_list)):
# Get patch
bbox = patch_bound_list[str(c)]['rect']
# Compute the amount of gradients present in the patch from the integral image.
cgf = getGF_fromintegral(integral_grad, bbox)/(bbox[2]*bbox[3])
# Check if patching is beneficial by comparing the gradient density of the patch to
# the gradient density of the whole image
if cgf >= gf:
bbox_test = bbox.copy()
patchlist[str(count)] = {}
# Enlarge each patch until the gradient density of the patch is equal
# to the whole image gradient density
while True:
bbox_test[0] = bbox_test[0] - int(search_step/2)
bbox_test[1] = bbox_test[1] - int(search_step/2)
bbox_test[2] = bbox_test[2] + search_step
bbox_test[3] = bbox_test[3] + search_step
# Check if we are still within the image
if bbox_test[0] < 0 or bbox_test[1] < 0 or bbox_test[1] + bbox_test[3] >= height \
or bbox_test[0] + bbox_test[2] >= width:
break
# Compare gradient density
cgf = getGF_fromintegral(integral_grad, bbox_test)/(bbox_test[2]*bbox_test[3])
if cgf < gf:
break
bbox = bbox_test.copy()
# Add patch to selected patches
patchlist[str(count)]['rect'] = bbox
patchlist[str(count)]['size'] = bbox[2]
count = count + 1
# Return selected patches
return patchlist
def impatch(image, rect):
# Extract the given patch pixels from a given image.
w1 = rect[0]
h1 = rect[1]
w2 = w1 + rect[2]
h2 = h1 + rect[3]
image_patch = image[h1:h2, w1:w2]
return image_patch
class ImageandPatchs:
def __init__(self, root_dir, name, patchsinfo, rgb_image, scale=1):
self.root_dir = root_dir
self.patchsinfo = patchsinfo
self.name = name
self.patchs = patchsinfo
self.scale = scale
self.rgb_image = cv2.resize(rgb_image, (round(rgb_image.shape[1]*scale), round(rgb_image.shape[0]*scale)),
interpolation=cv2.INTER_CUBIC)
self.do_have_estimate = False
self.estimation_updated_image = None
self.estimation_base_image = None
def __len__(self):
return len(self.patchs)
def set_base_estimate(self, est):
self.estimation_base_image = est
if self.estimation_updated_image is not None:
self.do_have_estimate = True
def set_updated_estimate(self, est):
self.estimation_updated_image = est
if self.estimation_base_image is not None:
self.do_have_estimate = True
def __getitem__(self, index):
patch_id = int(self.patchs[index][0])
rect = np.array(self.patchs[index][1]['rect'])
msize = self.patchs[index][1]['size']
## applying scale to rect:
rect = np.round(rect * self.scale)
rect = rect.astype('int')
msize = round(msize * self.scale)
patch_rgb = impatch(self.rgb_image, rect)
if self.do_have_estimate:
patch_whole_estimate_base = impatch(self.estimation_base_image, rect)
patch_whole_estimate_updated = impatch(self.estimation_updated_image, rect)
return {'patch_rgb': patch_rgb, 'patch_whole_estimate_base': patch_whole_estimate_base,
'patch_whole_estimate_updated': patch_whole_estimate_updated, 'rect': rect,
'size': msize, 'id': patch_id}
else:
return {'patch_rgb': patch_rgb, 'rect': rect, 'size': msize, 'id': patch_id}
def print_options(self, opt):
"""Print and save options
It will print both current options and default values(if different).
It will save options into a text file / [checkpoints_dir] / opt.txt
"""
message = ''
message += '----------------- Options ---------------\n'
for k, v in sorted(vars(opt).items()):
comment = ''
default = self.parser.get_default(k)
if v != default:
comment = '\t[default: %s]' % str(default)
message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
message += '----------------- End -------------------'
print(message)
# save to the disk
"""
expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
util.mkdirs(expr_dir)
file_name = os.path.join(expr_dir, '{}_opt.txt'.format(opt.phase))
with open(file_name, 'wt') as opt_file:
opt_file.write(message)
opt_file.write('\n')
"""
def parse(self):
"""Parse our options, create checkpoints directory suffix, and set up gpu device."""
opt = self.gather_options()
opt.isTrain = self.isTrain # train or test
# process opt.suffix
if opt.suffix:
suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else ''
opt.name = opt.name + suffix
#self.print_options(opt)
# set gpu ids
str_ids = opt.gpu_ids.split(',')
opt.gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >= 0:
opt.gpu_ids.append(id)
#if len(opt.gpu_ids) > 0:
# torch.cuda.set_device(opt.gpu_ids[0])
self.opt = opt
return self.opt
def estimateboost(img, model, model_type, pix2pixmodel, max_res=512):
global whole_size_threshold
# get settings
if hasattr(opts, 'depthmap_script_boost_rmax'):
whole_size_threshold = opts.depthmap_script_boost_rmax
if model_type == 0: #leres
net_receptive_field_size = 448
patch_netsize = 2 * net_receptive_field_size
elif model_type == 1: #dpt_beit_large_512
net_receptive_field_size = 512
patch_netsize = 2 * net_receptive_field_size
else: #other midas
net_receptive_field_size = 384
patch_netsize = 2 * net_receptive_field_size
gc.collect()
devices.torch_gc()
# Generate mask used to smoothly blend the local pathc estimations to the base estimate.
# It is arbitrarily large to avoid artifacts during rescaling for each crop.
mask_org = generatemask((3000, 3000))
mask = mask_org.copy()
# Value x of R_x defined in the section 5 of the main paper.
r_threshold_value = 0.2
#if R0:
# r_threshold_value = 0
input_resolution = img.shape
scale_threshold = 3 # Allows up-scaling with a scale up to 3
# Find the best input resolution R-x. The resolution search described in section 5-double estimation of the main paper and section B of the
# supplementary material.
whole_image_optimal_size, patch_scale = calculateprocessingres(img, net_receptive_field_size, r_threshold_value, scale_threshold, whole_size_threshold)
# print('wholeImage being processed in :', whole_image_optimal_size)
# Generate the base estimate using the double estimation.
whole_estimate = doubleestimate(img, net_receptive_field_size, whole_image_optimal_size, pix2pixsize, model, model_type, pix2pixmodel)
# Compute the multiplier described in section 6 of the main paper to make sure our initial patch can select
# small high-density regions of the image.
global factor
factor = max(min(1, 4 * patch_scale * whole_image_optimal_size / whole_size_threshold), 0.2)
# print('Adjust factor is:', 1/factor)
# Check if Local boosting is beneficial.
if max_res < whole_image_optimal_size:
# print("No Local boosting. Specified Max Res is smaller than R20, Returning doubleestimate result")
return cv2.resize(whole_estimate, (input_resolution[1], input_resolution[0]), interpolation=cv2.INTER_CUBIC)
# Compute the default target resolution.
if img.shape[0] > img.shape[1]:
a = 2 * whole_image_optimal_size
b = round(2 * whole_image_optimal_size * img.shape[1] / img.shape[0])
else:
a = round(2 * whole_image_optimal_size * img.shape[0] / img.shape[1])
b = 2 * whole_image_optimal_size
b = int(round(b / factor))
a = int(round(a / factor))
"""
# recompute a, b and saturate to max res.
if max(a,b) > max_res:
print('Default Res is higher than max-res: Reducing final resolution')
if img.shape[0] > img.shape[1]:
a = max_res
b = round(max_res * img.shape[1] / img.shape[0])
else:
a = round(max_res * img.shape[0] / img.shape[1])
b = max_res
b = int(b)
a = int(a)
"""
img = cv2.resize(img, (b, a), interpolation=cv2.INTER_CUBIC)
# Extract selected patches for local refinement
base_size = net_receptive_field_size * 2
patchset = generatepatchs(img, base_size)
# print('Target resolution: ', img.shape)
# Computing a scale in case user prompted to generate the results as the same resolution of the input.
# Notice that our method output resolution is independent of the input resolution and this parameter will only
# enable a scaling operation during the local patch merge implementation to generate results with the same resolution
# as the input.
"""
if output_resolution == 1:
mergein_scale = input_resolution[0] / img.shape[0]
print('Dynamicly change merged-in resolution; scale:', mergein_scale)
else:
mergein_scale = 1
"""
# always rescale to input res for now
mergein_scale = input_resolution[0] / img.shape[0]
imageandpatchs = ImageandPatchs('', '', patchset, img, mergein_scale)
whole_estimate_resized = cv2.resize(whole_estimate, (round(img.shape[1]*mergein_scale),
round(img.shape[0]*mergein_scale)), interpolation=cv2.INTER_CUBIC)
imageandpatchs.set_base_estimate(whole_estimate_resized.copy())
imageandpatchs.set_updated_estimate(whole_estimate_resized.copy())
print('Resulting depthmap resolution will be :', whole_estimate_resized.shape[:2])
print('Patches to process: '+str(len(imageandpatchs)))
# Enumerate through all patches, generate their estimations and refining the base estimate.
for patch_ind in range(len(imageandpatchs)):
# Get patch information
patch = imageandpatchs[patch_ind] # patch object
patch_rgb = patch['patch_rgb'] # rgb patch
patch_whole_estimate_base = patch['patch_whole_estimate_base'] # corresponding patch from base
rect = patch['rect'] # patch size and location
patch_id = patch['id'] # patch ID
org_size = patch_whole_estimate_base.shape # the original size from the unscaled input
print('\t Processing patch', patch_ind, '/', len(imageandpatchs)-1, '|', rect)
# We apply double estimation for patches. The high resolution value is fixed to twice the receptive
# field size of the network for patches to accelerate the process.
patch_estimation = doubleestimate(patch_rgb, net_receptive_field_size, patch_netsize, pix2pixsize, model, model_type, pix2pixmodel)
patch_estimation = cv2.resize(patch_estimation, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
patch_whole_estimate_base = cv2.resize(patch_whole_estimate_base, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
# Merging the patch estimation into the base estimate using our merge network:
# We feed the patch estimation and the same region from the updated base estimate to the merge network
# to generate the target estimate for the corresponding region.
pix2pixmodel.set_input(patch_whole_estimate_base, patch_estimation)
# Run merging network
pix2pixmodel.test()
visuals = pix2pixmodel.get_current_visuals()
prediction_mapped = visuals['fake_B']
prediction_mapped = (prediction_mapped+1)/2
prediction_mapped = prediction_mapped.squeeze().cpu().numpy()
mapped = prediction_mapped
# We use a simple linear polynomial to make sure the result of the merge network would match the values of
# base estimate
p_coef = np.polyfit(mapped.reshape(-1), patch_whole_estimate_base.reshape(-1), deg=1)
merged = np.polyval(p_coef, mapped.reshape(-1)).reshape(mapped.shape)
merged = cv2.resize(merged, (org_size[1],org_size[0]), interpolation=cv2.INTER_CUBIC)
# Get patch size and location
w1 = rect[0]
h1 = rect[1]
w2 = w1 + rect[2]
h2 = h1 + rect[3]
# To speed up the implementation, we only generate the Gaussian mask once with a sufficiently large size
# and resize it to our needed size while merging the patches.
if mask.shape != org_size:
mask = cv2.resize(mask_org, (org_size[1],org_size[0]), interpolation=cv2.INTER_LINEAR)
tobemergedto = imageandpatchs.estimation_updated_image
# Update the whole estimation:
# We use a simple Gaussian mask to blend the merged patch region with the base estimate to ensure seamless
# blending at the boundaries of the patch region.
tobemergedto[h1:h2, w1:w2] = np.multiply(tobemergedto[h1:h2, w1:w2], 1 - mask) + np.multiply(merged, mask)
imageandpatchs.set_updated_estimate(tobemergedto)
# output
return cv2.resize(imageandpatchs.estimation_updated_image, (input_resolution[1], input_resolution[0]), interpolation=cv2.INTER_CUBIC)
|