File size: 14,280 Bytes
122792f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
# -*- coding: utf-8 -*-
"""Untitled1.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1J4fCr7TGzdFvkCeikMAQ5af5ml2Q83W0
"""
import os
os.system('pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu')
import os, glob, fitz
import cv2
import os
import PIL
import torch
import pandas as pd
import numpy as np
import pandas as pd
import gradio as gr
from tqdm import tqdm
from PIL import Image as im
from scipy import ndimage
from difflib import SequenceMatcher
from itertools import groupby
from datasets import load_metric
from datasets import load_dataset
from datasets.features import ClassLabel
from transformers import AutoProcessor
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoModelForTokenClassification
from transformers.data.data_collator import default_data_collator
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D
from transformers import LayoutLMv3ForTokenClassification,LayoutLMv3FeatureExtractor
# define id2label
id2label={0: 'container id', 1: 'seal number', 2: 'container quantity', 3: 'container type', 4: 'tare', 5: 'package quantity', 6: 'weight', 7: 'others'}
custom_config = r'--oem 3 --psm 6'
# lang='eng+deu+ita+chi_sim'
lang='spa'
label_ints = np.random.randint(0,len(PIL.ImageColor.colormap.items()),42)
label_color_pil = [k for k,_ in PIL.ImageColor.colormap.items()]
label_color = [label_color_pil[i] for i in label_ints]
label2color = {}
for k,v in id2label.items():
if v[:2] == '':
label2color['o']=label_color[k]
else:
label2color[v[2:]]=label_color[k]
processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=True,lang=lang)
model = AutoModelForTokenClassification.from_pretrained("atatavana/layoutlm_manifesto_bigdataset")
def unnormalize_box(bbox, width, height):
#print('shape is: ', np.asarray(bbox).shape, ' and box has values: ', bbox)
return [
width * (bbox[0] / 1000),
height * (bbox[1] / 1000),
width * (bbox[2] / 1000),
height * (bbox[3] / 1000),
]
def iob_to_label(label):
if label == 0:
return 'container id'
if label == 1:
return 'seal number'
if label == 2:
return 'container quantity'
if label == 3:
return 'container type'
if label == 4:
return 'tare'
if label == 5:
return 'package quantity'
if label == 6:
return 'weight'
if label == 7:
return 'others'
# this method will detect if there is any intersect between two boxes or not
def intersect(w, z):
x1 = max(w[0], z[0]) #190 | 881 | 10
y1 = max(w[1], z[1]) #90 | 49 | 273
x2 = min(w[2], z[2]) #406 | 406 | 1310
y2 = min(w[3], z[3]) #149 | 703 | 149
if (x1 > x2 or y1 > y2):
return 0
else:
# because sometimes in annotating, it is possible to overlap rows or columns by mistake
# for very small pixels, we check a threshold to delete them
area = (x2-x1) * (y2-y1)
if (area > 0): #500 is minumum accepted area
return [int(x1), int(y1), int(x2), int(y2)]
else:
return 0
def process_image(image):
custom_config = r'--oem 3 --psm 6'
# lang='eng+deu+ita+chi_sim'
lang='spa'
width, height = image.size
feature_extractor = LayoutLMv3FeatureExtractor(apply_ocr=True,lang=lang)
encoding_feature_extractor = feature_extractor(image, return_tensors="pt",truncation=True)
words, boxes = encoding_feature_extractor.words, encoding_feature_extractor.boxes
custom_config = r'--oem 3 --psm 6'
# encode
inference_image = [image.convert("RGB")]
encoding = processor(inference_image , truncation=True, return_offsets_mapping=True, return_tensors="pt",
padding="max_length", stride =128, max_length=512, return_overflowing_tokens=True)
offset_mapping = encoding.pop('offset_mapping')
overflow_to_sample_mapping = encoding.pop('overflow_to_sample_mapping')
# change the shape of pixel values
x = []
for i in range(0, len(encoding['pixel_values'])):
x.append(encoding['pixel_values'][i])
x = torch.stack(x)
encoding['pixel_values'] = x
# forward pass
outputs = model(**encoding)
# get predictions
predictions = outputs.logits.argmax(-1).squeeze().tolist()
token_boxes = encoding.bbox.squeeze().tolist()
# only keep non-subword predictions
preds = []
l_words = []
bboxes = []
token_section_num = []
if (len(token_boxes) == 512):
predictions = [predictions]
token_boxes = [token_boxes]
for i in range(0, len(token_boxes)):
for j in range(0, len(token_boxes[i])):
#print(np.asarray(token_boxes[i][j]).shape)
unnormal_box = unnormalize_box(token_boxes[i][j], width, height)
#print('prediction: {} - box: {} - word:{}'.format(predictions[i][j], unnormal_box, processor.tokenizer.decode(encoding["input_ids"][i][j])))
if (np.asarray(token_boxes[i][j]).shape != (4,)):
continue
elif (token_boxes[i][j] == [0, 0, 0, 0] or token_boxes[i][j] == 0):
#print('zero found!')
continue
# if bbox is available in the list, just we need to update text
elif (unnormal_box not in bboxes):
preds.append(predictions[i][j])
l_words.append(processor.tokenizer.decode(encoding["input_ids"][i][j]))
bboxes.append(unnormal_box)
token_section_num.append(i)
else:
# we have to update the word
_index = bboxes.index(unnormal_box)
if (token_section_num[_index] == i):
# check if they're in a same section or not (documents with more than 512 tokens will divide to seperate
# parts, so it's possible to have a word in both of the pages and we have to control that repetetive words
# HERE: because they're in a same section, so we can merge them safely
l_words[_index] = l_words[_index] + processor.tokenizer.decode(encoding["input_ids"][i][j])
else:
continue
return bboxes, preds, l_words, image
def visualize_image(final_bbox, final_preds, l_words, image):
draw = ImageDraw.Draw(image)
font = ImageFont.load_default()
label2color = {'container id':'red', 'seal number':'blue', 'container quantity':'black', 'container type':'green', 'tare':'brown', 'package quantity':'purple', 'weight':'orange', 'others': 'white'}
l2l = {'container id':'red', 'seal number':'blue', 'container quantity':'black', 'container type':'green', 'tare':'brown', 'package quantity':'purple', 'weight':'orange', 'others': 'white'}
f_labels = {'container id':'red', 'seal number':'blue', 'container quantity':'black', 'container type':'green', 'tare':'brown', 'package quantity':'purple', 'weight':'orange', 'others': 'white'}
json_df = []
for ix, (prediction, box) in enumerate(zip(final_preds, final_bbox)):
predicted_label = iob_to_label(prediction).lower()
draw.rectangle(box, outline=label2color[predicted_label])
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
json_dict = {}
json_dict['TEXT'] = l_words[ix]
json_dict['LABEL'] = f_labels[predicted_label]
json_df.append(json_dict)
return image, json_df
def mergeCloseBoxes(pr, bb, wr, threshold):
idx = 0
final_bbox =[]
final_preds =[]
final_words=[]
for box, pred, word in zip(bb, pr, wr):
if (pred=='others'):
continue
else:
final_bbox.append(box)
final_preds.append(pred)
final_words.append(word)
for b, p, w in zip(bb, pr, wr):
if (p == 'others'):
continue
elif (box==b): # we shouldn't check each item with itself
continue
else:
XMIN, YMIN, XMAX, YMAX = box
xmin, ymin, xmax, ymax = b
intsc = intersect([XMIN, YMIN, XMAX+threshold, YMAX], [xmin-threshold, ymin, xmax, ymax])
if (intsc != 0 and pred==p):
#if(abs(XMAX - xmin) < treshold and abs(YMIN - ymin) < 10):
if(box in final_bbox):
final_bbox[idx]= [XMIN, min(YMIN, ymin), xmax, max(YMAX, ymax)]
final_words[idx] = word + ' ' + w
continue
print('box: {}, label: {} is close to b:{} with this p:{}--> {}'.format(box, pred, b, p, word + ' ' + w))
idx = idx +1
return final_bbox, final_preds, final_words
def createDataframe(preds, words):
df = pd.DataFrame(columns = ['container id' ,'seal number', 'container quantity', 'container type', 'package quantity', 'tare', 'weight'])
flag_label = preds[0]
#print(preds)
#print(words)
#print('@@@@@')
#print(flag_label)
row_number = -1
for i in range(len(preds)):
#print('i is: {}'.format(i))
if (preds[i] == flag_label):
row_number = row_number + 1
df.at[row_number, preds[i]] = words[i]
#print('row number is: {}'.format(row_number))
continue
else:
#print('row_number {} is <= of df.shape {}'.format(row_number, df.shape[0]))
#print(pd.isna(df[preds[i]].iloc[row_number]))
#print(pd.isna(df[preds[i]].iloc[row_number]))
if(pd.isna(df[preds[i]].iloc[row_number])):
df.at[row_number, preds[i]] = words[i]
else:
row_number = row_number + 1
df.at[row_number, preds[i]] = words[i]
return df
def isInside(w, z):
# return True if w is inside z, if z is inside w return false
if(w[0] >= z[0] and w[1] >= z[1] and w[2] <= z[2] and w[3] <= z[3]):
return True
return False
def removeSimilarItems(final_bbox, final_preds, final_words):
_bb =[]
_pp=[]
_ww=[]
for i in range(len(final_bbox)):
_bb.append(final_bbox[i])
_pp.append(final_preds[i])
_ww.append(final_words[i])
for j in range(len(final_bbox)):
if (final_bbox[i] == final_bbox[j]):
continue
elif (isInside(final_bbox[i], final_bbox[j]) and final_preds[i]==final_preds[j] ):
# box i is inside box j, so we have to remove it
#print('box[i]: {} is inside box[j]:{}'.format(final_bbox[i], final_bbox[j]))
_bb = _bb[:-1]
_pp = _pp[:-1]
_ww = _ww[:-1]
continue
return _bb, _pp, _ww
#[45.604, 2309.811, 66.652, 2391.6839999999997]
def process_form(preds, words, bboxes):
final_bbox, final_preds, final_words = mergeCloseBoxes(preds, bboxes, words, 70)
_bbox, _preds, _words = removeSimilarItems(final_bbox, final_preds, final_words)
# convert float list to int
_bbox = [[int(x) for x in item ] for item in _bbox]
# creat data object for sorting
data = []
for index in range(len(_bbox)):
data.append((_bbox[index], _preds[index], _words[index]))
# sorting by the height of the page
sorted_list = sorted(
data,
key=lambda x: x[0][1]
)
_bbox = [item[0] for item in sorted_list]
_preds = [item[1] for item in sorted_list]
_words = [item[2] for item in sorted_list]
return _bbox, _preds, _words
def mergeImageVertical(a):
list_im = a
imgs = [ Image.open(i) for i in list_im ]
# pick the image which is the smallest, and resize the others to match it (can be arbitrary image shape here)
min_shape = sorted( [(np.sum(i.size), i.size ) for i in imgs])[0][1]
imgs_comb = np.hstack([i.resize(min_shape) for i in imgs])
# for a vertical stacking it is simple: use vstack
imgs_comb = np.vstack([i.resize(min_shape) for i in imgs])
imgs_comb = Image.fromarray( imgs_comb)
imgs_comb.save( 'Trifecta_vertical.jpg' )
return imgs_comb
def completepreprocess(pdffile):
myDataFrame = pd.DataFrame()
a=[]
doc = fitz.open(pdffile)
for i in range(0,len(doc)):
page = doc.load_page(i)
zoom = 2 # zoom factor
mat = fitz.Matrix(zoom, zoom)
pix = page.get_pixmap(matrix = mat,dpi = 200)
t=pix.save("page"+str(i)+".jpg")
images = Image.open("page"+str(i)+".jpg")
image = images.convert("RGB")
bbox, preds, words, image = process_image(image)
im, df = visualize_image(bbox, preds, words, image)
im1 = im.save("page"+str(i)+".jpg")
a.append("page"+str(i)+".jpg")
pred_list = []
for number in preds:
pred_list.append(iob_to_label(number))
_bbox, _preds, _words = process_form(pred_list, words, bbox)
print('page: ' + str(i) + ' ' + str(len(_preds))+ ' ' + str(len(_words)))
df = createDataframe(_preds, _words)
myDataFrame=myDataFrame.append(df)
im2=mergeImageVertical(a)
return im2,myDataFrame
title = "Interactive demo: Manifesto Information Extraction model"
description = "Manifesto Information Extraction - We use Microsoft’s LayoutLMv3 trained on Manifesto Dataset through csv's to predict the labels. To use it, simply upload a PDF or use the example PDF below and click ‘Submit’. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select ‘Open image in new tab’.Train =63 ,Test =15"
css = """.output_image, .input_image {height: 600px !important}"""
#examples = [["461BHH69.PDF"],["AP-481-RF.PDF"],["DP-095-ML.PDF"],["DQ-231-LL.PDF"],["FK-941-ET.PDF"], ["FL-078-NH.PDF"]
# ,["14ZZ69.PDF"],["74BCA69.PDF"],["254BEG69.PDF"],["761BJQ69.PDF"],["AB-486-EH.PDF"],["AZ-211-ZA.PDF"], ["CY-073-YV.PDF"]]
# ["744BJQ69.PDF"], ['tarros_2.jpg'],
examples = [['3pages_messina.pdf'], ['messina2.jpg'], ['arkas1.jpg'], ['brointermed1.jpg'], ['brointermed2.pdf'], ['tarros_1.jpg'], ['tarros_3.jpg'], ['tarros_4.jpg']]
iface = gr.Interface(fn=completepreprocess,
#inputs=gr.inputs.Image(type="pil",optional=True,label="upload file"),
inputs=gr.File(label="PDF"),
#inputs=gr.inputs.Image(type="pil")
outputs=[gr.outputs.Image(type="pil", label="annotated image"),"dataframe"] ,
title=title,
description=description,
examples=examples,
css=css,
analytics_enabled = True, enable_queue=True)
iface.launch(inline=False , debug=True) |