Spaces:
Runtime error
Runtime error
File size: 1,034 Bytes
aded65f b95f6dc aded65f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import streamlit as st
import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
import transformers
# Define the Streamlit app
st.title("Mistral Model Integration")
# Create a text input for the user to enter their prompt
instruction = st.text_area("Enter your prompt:")
# Function to interact with Mistral Model
def mistral_model(prompt, token_limit):
# Your model loading and inference code here (from the code you provided)
# ...
return responses
# Check if the user entered a prompt
if instruction:
# Add a slider for selecting the token limit
token_limit = st.slider("Select token limit", min_value=10, max_value=500, value=250)
# Create a button to trigger model inference
if st.button("Generate Response"):
responses = mistral_model(instruction, token_limit)
st.write("Generated Responses:")
for response in responses:
st.write(response)
# Finally, run the Streamlit app
if __name__ == "__main__":
st.run()
|