Spaces:
Sleeping
Sleeping
File size: 6,391 Bytes
e369355 f80a497 d5be36f f80a497 55d0647 f80a497 e369355 f80a497 e369355 f80a497 d5be36f f80a497 d5be36f f80a497 d5be36f f80a497 e369355 f80a497 e369355 f80a497 e369355 f80a497 e369355 f80a497 e369355 f80a497 e369355 f80a497 e369355 f80a497 55d0647 e369355 f80a497 55d0647 e369355 f80a497 e369355 f80a497 e369355 f80a497 e369355 f80a497 e369355 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import panel as pn
import pandas as pd
import torch
import numpy as np
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import sys
import pyvene as pv
from pyvene import embed_to_distrib, format_token
from pyvene import RepresentationConfig, IntervenableConfig, IntervenableModel
from pyvene import VanillaIntervention
pn.extension(sizing_mode="stretch_width")
# Initialize model and tokenizer
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
gpt2 = GPT2LMHeadModel.from_pretrained('gpt2')
num_layers = gpt2.config.n_layer
# Set padding token for the tokenizer
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
gpt2.config.pad_token_id = tokenizer.eos_token_id
device = 'cuda' if torch.cuda.is_available() else 'cpu'
gpt2.to(device)
# Monkey patch the embed_to_distrib function to use the correct attribute
def patched_embed_to_distrib(model, embed, log=True, logits=True):
if "gpt2" in model.config.architectures[0].lower():
with torch.inference_mode():
vocab = torch.matmul(embed, model.transformer.wte.weight.t())
if logits:
return vocab
if log:
return torch.log_softmax(vocab, dim=-1)
return torch.softmax(vocab, dim=-1)
else:
return pv.embed_to_distrib(model, embed, log, logits)
pv.embed_to_distrib = patched_embed_to_distrib
def simple_position_config(model_type, component, layer):
config = IntervenableConfig(
model_type=model_type,
representations=[
RepresentationConfig(
layer, # layer
component, # component
"pos", # intervention unit
1, # max number of unit
),
],
intervention_types=VanillaIntervention,
)
return config
def process_sentences(base_sentence, rival_sentence):
base = tokenizer(base_sentence, return_tensors="pt", padding=True, truncation=True, max_length=64).to(device)
rival = tokenizer(rival_sentence, return_tensors="pt", padding=True, truncation=True, max_length=64).to(device)
tokens = tokenizer.encode(" True False")
data = []
with torch.no_grad():
base_outputs = gpt2(**base, output_hidden_states=True)
# Use the last hidden state from the output
last_hidden_state = base_outputs.hidden_states[-1]
distrib_base = pv.embed_to_distrib(gpt2, last_hidden_state, logits=False)
logprob_true_base = np.log(float(distrib_base[0][-1][tokens[0]]))
logprob_false_base = np.log(float(distrib_base[0][-1][tokens[1]]))
base_tokens = tokenizer.convert_ids_to_tokens(base.input_ids[0])
if logprob_true_base - logprob_false_base > 0:
for layer_i in range(num_layers):
for component in ["attention_input"]:
try:
config = simple_position_config(type(gpt2), component, layer_i)
intervenable = IntervenableModel(config, gpt2).to(device)
max_length = min(base.input_ids.shape[1], rival.input_ids.shape[1])
for pos_i in range(max_length):
base_input = {key: val[:, :max_length].to(device) for key, val in base.items()}
rival_input = {key: val[:, :max_length].to(device) for key, val in rival.items()}
_, counterfactual_outputs = intervenable(
base_input, [rival_input], {"sources->base": pos_i}
)
# Use the last hidden state from the counterfactual output
last_hidden_state = counterfactual_outputs.hidden_states[-1]
distrib = pv.embed_to_distrib(gpt2, last_hidden_state, logits=False)
for token in tokens:
data.append({
"token": format_token(tokenizer, token),
"prob": float(distrib[0][-1][token]),
"layer": f"a{layer_i}",
"pos": base_tokens[pos_i] if pos_i < len(base_tokens) else "[PAD]",
"type": component,
})
except Exception as e:
print(f"Error in layer {layer_i}, component {component}: {str(e)}")
continue
return pd.DataFrame(data)
async def process_inputs(base_sentence: str, rival_sentence: str):
try:
main.disabled = True
if not base_sentence or not rival_sentence:
yield "##### β οΈ Please provide both base and rival sentences"
return
yield "##### β Processing sentences and running model..."
try:
result_df = process_sentences(base_sentence, rival_sentence)
except Exception as e:
yield f"##### π Something went wrong, please try different sentences! Error: {str(e)}"
return
# build the results column
results = pn.Column("##### π Here are the results!")
# Display the DataFrame
results.append(pn.pane.DataFrame(result_df))
yield results
finally:
main.disabled = False
# create widgets
base_sentence = pn.widgets.TextInput(
name="Base Sentence",
placeholder="Enter the base sentence",
value="Jane got some weird looks because she wore sunglasses outside at 4 PM.",
)
rival_sentence = pn.widgets.TextInput(
name="Rival Sentence",
placeholder="Enter the rival sentence",
value="Jane got some weird looks because she wore sunglasses outside at 4 AM.",
)
input_widgets = pn.Column(
"##### π Enter base and rival sentences to start comparing!",
base_sentence,
rival_sentence,
)
# add interactivity
interactive_result = pn.panel(
pn.bind(process_inputs, base_sentence=base_sentence, rival_sentence=rival_sentence),
height=600,
)
# create dashboard
main = pn.WidgetBox(
input_widgets,
interactive_result,
)
title = "Sentence Comparison Demo"
pn.template.BootstrapTemplate(
title=title,
main=main,
main_max_width="min(80%, 1200px)",
header_background="#4B0082",
).servable(title=title) |