File size: 11,663 Bytes
2ada91a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import streamlit as st
import cv2
import numpy as np
from ultralytics import YOLO
import pytesseract
from PIL import Image
import os

# Set page title and icon
st.set_page_config(page_title="Motorcycle Helmet Detection", layout="wide")

# Set Tesseract path
pytesseract.pytesseract.tesseract_cmd = '/opt/homebrew/bin/tesseract'

# Load models
@st.cache_resource
def load_models():
    # Load YOLO models
    detection_model = YOLO("yolov8n.pt")
    
    # Load face detection model
    face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
    
    return detection_model, face_cascade

# Load the models
try:
    detection_model, face_cascade = load_models()
    st.sidebar.success("βœ… Models loaded successfully")
except Exception as e:
    st.error(f"Error loading models: {str(e)}")
    st.stop()

def extract_license_plate(image, roi=None):
    """Extract license plate from image or region of interest"""
    if roi is not None:
        # If a region is specified, use it
        target = roi
    else:
        # Otherwise use the whole image
        target = image
        
    plate_text = None
    
    try:
        # Convert to grayscale
        gray = cv2.cvtColor(target, cv2.COLOR_BGR2GRAY)
        gray = cv2.bilateralFilter(gray, 11, 17, 17)
        edged = cv2.Canny(gray, 30, 200)
        
        # Find contours
        contours, _ = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
        contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10]
        
        for contour in contours:
            perimeter = cv2.arcLength(contour, True)
            approx = cv2.approxPolyDP(contour, 0.02 * perimeter, True)
            
            # License plates are typically rectangular (4 points)
            if len(approx) == 4:
                x, y, w, h = cv2.boundingRect(approx)
                
                # Filter by aspect ratio - license plates are typically wider than tall
                aspect_ratio = float(w) / h
                if 1.5 < aspect_ratio < 5.0:
                    plate_roi = gray[y:y+h, x:x+w]
                    
                    if plate_roi.size > 0:
                        # Resize for better OCR
                        plate_roi = cv2.resize(plate_roi, None, fx=2, fy=2)
                        # Apply threshold to improve text extraction
                        _, plate_roi = cv2.threshold(plate_roi, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
                        # Extract text
                        plate_text = pytesseract.image_to_string(plate_roi, 
                                                                config='--psm 7 --oem 3 -c tessedit_char_whitelist=ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789')
                        plate_text = ''.join(e for e in plate_text if e.isalnum())
                        
                        if len(plate_text) > 3:  # Basic validation
                            return plate_text
    except Exception as e:
        print(f"Error extracting license plate: {e}")
        
    return plate_text

def detect_helmet_with_circle_detection(image, head_region):
    """Detect helmet using circle detection"""
    try:
        # Extract head region
        x, y, w, h = head_region
        head = image[y:y+h, x:x+w]
        
        # Convert to grayscale
        gray = cv2.cvtColor(head, cv2.COLOR_BGR2GRAY)
        
        # Apply GaussianBlur to reduce noise
        gray = cv2.GaussianBlur(gray, (5, 5), 0)
        
        # Detect circles
        circles = cv2.HoughCircles(
            gray, cv2.HOUGH_GRADIENT, dp=1, minDist=20,
            param1=50, param2=30, minRadius=int(w*0.2), maxRadius=int(w*0.6)
        )
        
        # If circles detected, likely a helmet
        return circles is not None and len(circles[0]) > 0
    except:
        return False

def detect_helmet_with_color(image, head_region):
    """Detect helmet using color analysis"""
    try:
        # Extract head region
        x, y, w, h = head_region
        head = image[y:y+h, x:x+w]
        
        # Convert to HSV
        hsv = cv2.cvtColor(head, cv2.COLOR_BGR2HSV)
        
        # Define color ranges for common helmet colors (black, white, red, blue)
        # Black
        lower_black = np.array([0, 0, 0])
        upper_black = np.array([180, 255, 50])
        black_mask = cv2.inRange(hsv, lower_black, upper_black)
        
        # White
        lower_white = np.array([0, 0, 200])
        upper_white = np.array([180, 30, 255])
        white_mask = cv2.inRange(hsv, lower_white, upper_white)
        
        # Red (two ranges)
        lower_red1 = np.array([0, 100, 100])
        upper_red1 = np.array([10, 255, 255])
        red_mask1 = cv2.inRange(hsv, lower_red1, upper_red1)
        
        lower_red2 = np.array([160, 100, 100])
        upper_red2 = np.array([180, 255, 255])
        red_mask2 = cv2.inRange(hsv, lower_red2, upper_red2)
        
        # Blue
        lower_blue = np.array([100, 100, 100])
        upper_blue = np.array([140, 255, 255])
        blue_mask = cv2.inRange(hsv, lower_blue, upper_blue)
        
        # Combine masks
        combined_mask = black_mask + white_mask + red_mask1 + red_mask2 + blue_mask
        
        # Calculate percentage of helmet colors
        helmet_color_percentage = np.sum(combined_mask > 0) / (w * h)
        
        # If more than 30% of the head region has helmet-like colors, likely a helmet
        return helmet_color_percentage > 0.3
    except:
        return False

def process_image(image):
    if isinstance(image, Image.Image):
        # Convert PIL image to OpenCV format
        image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    
    # Make a copy for annotation
    annotated_img = image.copy()
    
    # Run YOLO detection for motorcycle and person
    results = detection_model(image)[0]
    
    # Initialize variables
    helmet_detected = False
    person_detected = False
    motorcycle_detected = False
    plate_text = None
    
    # Variables to store bounding boxes
    person_boxes = []
    motorcycle_boxes = []
    
    # Check detections
    for box in results.boxes:
        cls = int(box.cls[0])
        conf = float(box.conf[0])
        
        if conf > 0.3:  # Confidence threshold
            x1, y1, x2, y2 = map(int, box.xyxy[0])
            
            # Standard YOLOv8 classes
            if cls == 0:  # Person
                person_detected = True
                person_boxes.append((x1, y1, x2, y2))
                # Get head region (top 30% of person bounding box)
                head_x = x1
                head_y = y1
                head_w = x2 - x1
                head_h = int((y2 - y1) * 0.3)
                head_region = (head_x, head_y, head_w, head_h)
                
                # Draw head region for debugging
                cv2.rectangle(annotated_img, (head_x, head_y), (head_x + head_w, head_y + head_h), (0, 255, 255), 2)
                
                # Extract head image
                head_img = image[head_y:head_y+head_h, head_x:head_x+head_w]
                
                # Use multiple methods to detect helmet
                if head_img.size > 0:
                    # Method 1: Check for faces - visible face might indicate no helmet
                    gray = cv2.cvtColor(head_img, cv2.COLOR_BGR2GRAY)
                    faces = face_cascade.detectMultiScale(gray, 1.3, 5)
                    
                    if len(faces) > 0:
                        # Face detected, likely no helmet
                        helmet_detected = False
                        cv2.putText(annotated_img, "Face Detected", (head_x, head_y - 10), 
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
                    else:
                        # No face detected, check other methods
                        # Method 2: Circle detection
                        helmet_detected = detect_helmet_with_circle_detection(image, head_region)
                        
                        # Method 3: Color analysis
                        if not helmet_detected:
                            helmet_detected = detect_helmet_with_color(image, head_region)
                
            elif cls == 3:  # Motorcycle
                motorcycle_detected = True
                motorcycle_boxes.append((x1, y1, x2, y2))
                
                # Extract license plate from motorcycle region
                roi = image[y1:y2, x1:x2]
                if roi.size > 0:
                    moto_plate = extract_license_plate(image, roi)
                    if moto_plate:
                        plate_text = moto_plate
    
    # If a person on a motorcycle is detected, but no license plate found yet, try on full image
    if person_detected and motorcycle_detected and not plate_text:
        plate_text = extract_license_plate(image)
    
    # Add manual override option via sidebar
    st.sidebar.markdown("### Detection Override")
    if st.sidebar.checkbox("Override automatic detection"):
        helmet_detected = st.sidebar.radio("Helmet Status:", [True, False], index=0 if helmet_detected else 1)
    
    return helmet_detected, plate_text, cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB)

# Streamlit UI
st.title("🏍️ Motorcycle Helmet Detection System")
st.write("Upload an image to detect helmet usage and license plate")

uploaded_file = st.file_uploader("Choose an image", type=['jpg', 'jpeg', 'png'])

if uploaded_file is not None:
    image = Image.open(uploaded_file)
    
    col1, col2 = st.columns(2)
    
    with col1:
        st.image(image, caption="Uploaded Image", use_column_width=True)
    
    with st.spinner('Processing image...'):
        helmet_detected, plate_text, processed_image = process_image(image)
        
        with col2:
            st.image(processed_image, caption="Processed Image", use_column_width=True)
        
        # Display results with custom styling
        if helmet_detected:
            st.markdown("""
                <div style='padding: 20px; background-color: #d4edda; border-radius: 5px; margin: 10px 0;'>
                    <h3 style='color: #155724; margin: 0;'>βœ… Helmet Detected!</h3>
                </div>
                """, unsafe_allow_html=True)
        else:
            st.markdown("""
                <div style='padding: 20px; background-color: #f8d7da; border-radius: 5px; margin: 10px 0;'>
                    <h3 style='color: #721c24; margin: 0;'>❌ No Helmet Detected - Violation!</h3>
                </div>
                """, unsafe_allow_html=True)
            
            # Always show license plate if detected, but emphasize when violation occurs
            if plate_text:
                st.markdown(f"""
                    <div style='padding: 20px; background-color: #f8d7da; border-radius: 5px; margin: 10px 0;'>
                        <h3 style='color: #721c24; margin: 0;'>License Plate Number:</h3>
                        <p style='font-size: 24px; margin: 10px 0 0 0;'>{plate_text}</p>
                    </div>
                    """, unsafe_allow_html=True)
        
        # Only show license plate in neutral box if compliant
        if helmet_detected and plate_text:
            st.markdown(f"""
                <div style='padding: 20px; background-color: #e2e3e5; border-radius: 5px; margin: 10px 0;'>
                    <h3 style='color: #383d41; margin: 0;'>License Plate Number:</h3>
                    <p style='font-size: 24px; margin: 10px 0 0 0;'>{plate_text}</p>
                </div>
                """, unsafe_allow_html=True)