Spaces:
Sleeping
Sleeping
File size: 11,663 Bytes
2ada91a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import streamlit as st
import cv2
import numpy as np
from ultralytics import YOLO
import pytesseract
from PIL import Image
import os
# Set page title and icon
st.set_page_config(page_title="Motorcycle Helmet Detection", layout="wide")
# Set Tesseract path
pytesseract.pytesseract.tesseract_cmd = '/opt/homebrew/bin/tesseract'
# Load models
@st.cache_resource
def load_models():
# Load YOLO models
detection_model = YOLO("yolov8n.pt")
# Load face detection model
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
return detection_model, face_cascade
# Load the models
try:
detection_model, face_cascade = load_models()
st.sidebar.success("β
Models loaded successfully")
except Exception as e:
st.error(f"Error loading models: {str(e)}")
st.stop()
def extract_license_plate(image, roi=None):
"""Extract license plate from image or region of interest"""
if roi is not None:
# If a region is specified, use it
target = roi
else:
# Otherwise use the whole image
target = image
plate_text = None
try:
# Convert to grayscale
gray = cv2.cvtColor(target, cv2.COLOR_BGR2GRAY)
gray = cv2.bilateralFilter(gray, 11, 17, 17)
edged = cv2.Canny(gray, 30, 200)
# Find contours
contours, _ = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10]
for contour in contours:
perimeter = cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, 0.02 * perimeter, True)
# License plates are typically rectangular (4 points)
if len(approx) == 4:
x, y, w, h = cv2.boundingRect(approx)
# Filter by aspect ratio - license plates are typically wider than tall
aspect_ratio = float(w) / h
if 1.5 < aspect_ratio < 5.0:
plate_roi = gray[y:y+h, x:x+w]
if plate_roi.size > 0:
# Resize for better OCR
plate_roi = cv2.resize(plate_roi, None, fx=2, fy=2)
# Apply threshold to improve text extraction
_, plate_roi = cv2.threshold(plate_roi, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# Extract text
plate_text = pytesseract.image_to_string(plate_roi,
config='--psm 7 --oem 3 -c tessedit_char_whitelist=ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789')
plate_text = ''.join(e for e in plate_text if e.isalnum())
if len(plate_text) > 3: # Basic validation
return plate_text
except Exception as e:
print(f"Error extracting license plate: {e}")
return plate_text
def detect_helmet_with_circle_detection(image, head_region):
"""Detect helmet using circle detection"""
try:
# Extract head region
x, y, w, h = head_region
head = image[y:y+h, x:x+w]
# Convert to grayscale
gray = cv2.cvtColor(head, cv2.COLOR_BGR2GRAY)
# Apply GaussianBlur to reduce noise
gray = cv2.GaussianBlur(gray, (5, 5), 0)
# Detect circles
circles = cv2.HoughCircles(
gray, cv2.HOUGH_GRADIENT, dp=1, minDist=20,
param1=50, param2=30, minRadius=int(w*0.2), maxRadius=int(w*0.6)
)
# If circles detected, likely a helmet
return circles is not None and len(circles[0]) > 0
except:
return False
def detect_helmet_with_color(image, head_region):
"""Detect helmet using color analysis"""
try:
# Extract head region
x, y, w, h = head_region
head = image[y:y+h, x:x+w]
# Convert to HSV
hsv = cv2.cvtColor(head, cv2.COLOR_BGR2HSV)
# Define color ranges for common helmet colors (black, white, red, blue)
# Black
lower_black = np.array([0, 0, 0])
upper_black = np.array([180, 255, 50])
black_mask = cv2.inRange(hsv, lower_black, upper_black)
# White
lower_white = np.array([0, 0, 200])
upper_white = np.array([180, 30, 255])
white_mask = cv2.inRange(hsv, lower_white, upper_white)
# Red (two ranges)
lower_red1 = np.array([0, 100, 100])
upper_red1 = np.array([10, 255, 255])
red_mask1 = cv2.inRange(hsv, lower_red1, upper_red1)
lower_red2 = np.array([160, 100, 100])
upper_red2 = np.array([180, 255, 255])
red_mask2 = cv2.inRange(hsv, lower_red2, upper_red2)
# Blue
lower_blue = np.array([100, 100, 100])
upper_blue = np.array([140, 255, 255])
blue_mask = cv2.inRange(hsv, lower_blue, upper_blue)
# Combine masks
combined_mask = black_mask + white_mask + red_mask1 + red_mask2 + blue_mask
# Calculate percentage of helmet colors
helmet_color_percentage = np.sum(combined_mask > 0) / (w * h)
# If more than 30% of the head region has helmet-like colors, likely a helmet
return helmet_color_percentage > 0.3
except:
return False
def process_image(image):
if isinstance(image, Image.Image):
# Convert PIL image to OpenCV format
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Make a copy for annotation
annotated_img = image.copy()
# Run YOLO detection for motorcycle and person
results = detection_model(image)[0]
# Initialize variables
helmet_detected = False
person_detected = False
motorcycle_detected = False
plate_text = None
# Variables to store bounding boxes
person_boxes = []
motorcycle_boxes = []
# Check detections
for box in results.boxes:
cls = int(box.cls[0])
conf = float(box.conf[0])
if conf > 0.3: # Confidence threshold
x1, y1, x2, y2 = map(int, box.xyxy[0])
# Standard YOLOv8 classes
if cls == 0: # Person
person_detected = True
person_boxes.append((x1, y1, x2, y2))
# Get head region (top 30% of person bounding box)
head_x = x1
head_y = y1
head_w = x2 - x1
head_h = int((y2 - y1) * 0.3)
head_region = (head_x, head_y, head_w, head_h)
# Draw head region for debugging
cv2.rectangle(annotated_img, (head_x, head_y), (head_x + head_w, head_y + head_h), (0, 255, 255), 2)
# Extract head image
head_img = image[head_y:head_y+head_h, head_x:head_x+head_w]
# Use multiple methods to detect helmet
if head_img.size > 0:
# Method 1: Check for faces - visible face might indicate no helmet
gray = cv2.cvtColor(head_img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
if len(faces) > 0:
# Face detected, likely no helmet
helmet_detected = False
cv2.putText(annotated_img, "Face Detected", (head_x, head_y - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
else:
# No face detected, check other methods
# Method 2: Circle detection
helmet_detected = detect_helmet_with_circle_detection(image, head_region)
# Method 3: Color analysis
if not helmet_detected:
helmet_detected = detect_helmet_with_color(image, head_region)
elif cls == 3: # Motorcycle
motorcycle_detected = True
motorcycle_boxes.append((x1, y1, x2, y2))
# Extract license plate from motorcycle region
roi = image[y1:y2, x1:x2]
if roi.size > 0:
moto_plate = extract_license_plate(image, roi)
if moto_plate:
plate_text = moto_plate
# If a person on a motorcycle is detected, but no license plate found yet, try on full image
if person_detected and motorcycle_detected and not plate_text:
plate_text = extract_license_plate(image)
# Add manual override option via sidebar
st.sidebar.markdown("### Detection Override")
if st.sidebar.checkbox("Override automatic detection"):
helmet_detected = st.sidebar.radio("Helmet Status:", [True, False], index=0 if helmet_detected else 1)
return helmet_detected, plate_text, cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB)
# Streamlit UI
st.title("ποΈ Motorcycle Helmet Detection System")
st.write("Upload an image to detect helmet usage and license plate")
uploaded_file = st.file_uploader("Choose an image", type=['jpg', 'jpeg', 'png'])
if uploaded_file is not None:
image = Image.open(uploaded_file)
col1, col2 = st.columns(2)
with col1:
st.image(image, caption="Uploaded Image", use_column_width=True)
with st.spinner('Processing image...'):
helmet_detected, plate_text, processed_image = process_image(image)
with col2:
st.image(processed_image, caption="Processed Image", use_column_width=True)
# Display results with custom styling
if helmet_detected:
st.markdown("""
<div style='padding: 20px; background-color: #d4edda; border-radius: 5px; margin: 10px 0;'>
<h3 style='color: #155724; margin: 0;'>β
Helmet Detected!</h3>
</div>
""", unsafe_allow_html=True)
else:
st.markdown("""
<div style='padding: 20px; background-color: #f8d7da; border-radius: 5px; margin: 10px 0;'>
<h3 style='color: #721c24; margin: 0;'>β No Helmet Detected - Violation!</h3>
</div>
""", unsafe_allow_html=True)
# Always show license plate if detected, but emphasize when violation occurs
if plate_text:
st.markdown(f"""
<div style='padding: 20px; background-color: #f8d7da; border-radius: 5px; margin: 10px 0;'>
<h3 style='color: #721c24; margin: 0;'>License Plate Number:</h3>
<p style='font-size: 24px; margin: 10px 0 0 0;'>{plate_text}</p>
</div>
""", unsafe_allow_html=True)
# Only show license plate in neutral box if compliant
if helmet_detected and plate_text:
st.markdown(f"""
<div style='padding: 20px; background-color: #e2e3e5; border-radius: 5px; margin: 10px 0;'>
<h3 style='color: #383d41; margin: 0;'>License Plate Number:</h3>
<p style='font-size: 24px; margin: 10px 0 0 0;'>{plate_text}</p>
</div>
""", unsafe_allow_html=True)
|