File size: 4,862 Bytes
06fdab0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import gradio as gr
import random
import time

MAX_QUESTIONS = 10  # Maximum number of questions to support

######
# Fix the models
# 
MODELS = [
    "anthropic/claude-3-opus",
    "anthropic/claude-3-sonnet",
    "google/gemini-pro",
    "meta-llama/llama-2-70b-chat",
    "mistral/mistral-medium",
    "deepseek/deepseek-coder",
    "deepseek/deepseek-r1",
]
#
######

######
# Add OpenRouter here
# 
def get_response(question, model):
    # Simulate an API call with a random delay
    time.sleep(random.uniform(0.5, 1.5))
    return f"Sample response from {model} for: {question}"
#
######

def read_questions(file_obj):
    """Read questions from uploaded file and return as list"""
    with open(file_obj.name, 'r') as file:
        questions = [q.strip() for q in file.readlines() if q.strip()]
        if len(questions) > MAX_QUESTIONS:
            raise gr.Error(f"Maximum {MAX_QUESTIONS} questions allowed.")
    return questions

with gr.Blocks() as demo:
    gr.Markdown("# Vibes Benchmark\nUpload a `.txt` file with **one question per line**.")
    
    file_input = gr.File(label="Upload your questions (.txt)")
    run_button = gr.Button("Run Benchmark", variant="primary")
    
    # Create dynamic response areas
    response_areas = []
    for i in range(MAX_QUESTIONS):
        with gr.Group(visible=False) as group_i:
            gr.Markdown(f"### Question {i+1}")
            with gr.Row():
                with gr.Column():
                    # Accordion for Model 1
                    with gr.Accordion("Model 1", open=False):
                        model1_i = gr.Markdown("")
                    response1_i = gr.Textbox(label="Response 1", interactive=False, lines=4)
                with gr.Column():
                    # Accordion for Model 2
                    with gr.Accordion("Model 2", open=False):
                        model2_i = gr.Markdown("")
                    response2_i = gr.Textbox(label="Response 2", interactive=False, lines=4)
            gr.Markdown("---")
            
        response_areas.append({
            'group': group_i,
            'model1': model1_i,
            'response1': response1_i,
            'model2': model2_i,
            'response2': response2_i
        })

    def process_file(file):
        """Show/hide question groups depending on how many questions are in the file."""
        if file is None:
            raise gr.Error("Please upload a file first.")
        questions = read_questions(file)
        
        # Show as many question groups as needed; hide the rest
        updates = []
        for i in range(MAX_QUESTIONS):
            updates.append(gr.update(visible=(i < len(questions))))
        
        return updates

    def run_benchmark(file):
        """Generator function yielding partial updates in real time."""
        questions = read_questions(file)
        
        # Initialize all update values as blank
        # We have 4 fields per question (model1, response1, model2, response2)
        # => total of MAX_QUESTIONS * 4 output components
        updates = [gr.update(value="")] * (MAX_QUESTIONS * 4)
        
        # Process each question, 2 models per question
        for i, question in enumerate(questions):
            # 1) Pick first model, yield it
            model_1 = random.choice(MODELS)
            updates[i*4] = gr.update(value=f"**{model_1}**")  # model1 for question i
            yield updates  # partial update (reveal model_1 accordion)
            
            # 2) Get response from model_1
            response_1 = get_response(question, model_1)
            updates[i*4 + 1] = gr.update(value=response_1)   # response1
            yield updates
            
            # 3) Pick second model (ensure different from first), yield it
            remaining_models = [m for m in MODELS if m != model_1]
            model_2 = random.choice(remaining_models)
            updates[i*4 + 2] = gr.update(value=f"**{model_2}**")  # model2
            yield updates
            
            # 4) Get response from model_2
            response_2 = get_response(question, model_2)
            updates[i*4 + 3] = gr.update(value=response_2)  # response2
            yield updates

    # The outputs we update after each yield
    update_targets = []
    for area in response_areas:
        update_targets.append(area['model1'])
        update_targets.append(area['response1'])
        update_targets.append(area['model2'])
        update_targets.append(area['response2'])

    # Connect events
    file_input.change(
        fn=process_file,
        inputs=file_input,
        outputs=[area['group'] for area in response_areas]
    )

    run_button.click(
        fn=run_benchmark,
        inputs=file_input,
        outputs=update_targets
    )

# Enable queue for partial outputs to appear as they are yielded
demo.queue()
demo.launch()