Update human_eval.py
Browse files- human_eval.py +203 -203
human_eval.py
CHANGED
@@ -1,204 +1,204 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from collections import defaultdict
|
3 |
-
import os
|
4 |
-
import base64
|
5 |
-
import torch
|
6 |
-
from datasets import (
|
7 |
-
Dataset,
|
8 |
-
load_dataset,
|
9 |
-
)
|
10 |
-
import random
|
11 |
-
import pandas as pd
|
12 |
-
from collections import defaultdict
|
13 |
-
|
14 |
-
def encode_image_to_base64(image_path):
|
15 |
-
"""Encode an image or GIF file to base64."""
|
16 |
-
with open(image_path, "rb") as file:
|
17 |
-
encoded_string = base64.b64encode(file.read()).decode()
|
18 |
-
return encoded_string
|
19 |
-
|
20 |
-
def create_html_media(media_path, is_gif=False):
|
21 |
-
"""Create HTML for displaying an image or GIF."""
|
22 |
-
media_base64 = encode_image_to_base64(media_path)
|
23 |
-
media_type = "gif" if is_gif else "jpeg"
|
24 |
-
|
25 |
-
html_string = f"""
|
26 |
-
<div style="display: flex; justify-content: center; align-items: center; width: 100%; text-align: center;">
|
27 |
-
<div style="max-width: 450px; margin: auto;">
|
28 |
-
<img src="data:image/{media_type};base64,{media_base64}"
|
29 |
-
style="max-width: 75%; height: auto; display: block; margin: 0 auto; margin-top: 50px;"
|
30 |
-
alt="Displayed Media">
|
31 |
-
</div>
|
32 |
-
</div>
|
33 |
-
"""
|
34 |
-
return html_string
|
35 |
-
|
36 |
-
class LMBattleArena:
|
37 |
-
def __init__(self, dataset_path):
|
38 |
-
"""Initialize battle arena with dataset"""
|
39 |
-
self.df = pd.read_csv(dataset_path)
|
40 |
-
print(self.df.head())
|
41 |
-
self.current_index = 0
|
42 |
-
self.saving_freq = 10 # save the results in csv/push to hub every 10 evaluations
|
43 |
-
self.evaluation_results = []
|
44 |
-
self.model_scores = defaultdict(lambda: {'wins': 0, 'total_comparisons': 0})
|
45 |
-
|
46 |
-
def get_next_battle_pair(self):
|
47 |
-
"""Retrieve next pair of summaries for comparison"""
|
48 |
-
if self.current_index >= len(self.df):
|
49 |
-
return None
|
50 |
-
|
51 |
-
row = self.df.iloc[self.current_index]
|
52 |
-
model_summary_cols = [
|
53 |
-
col
|
54 |
-
for col in row.index
|
55 |
-
if col.upper() != 'PROMPT'
|
56 |
-
]
|
57 |
-
selected_models = random.sample(model_summary_cols, 2)
|
58 |
-
battle_data = {
|
59 |
-
'prompt': row['prompt'],
|
60 |
-
'model_1': row[selected_models[0]],
|
61 |
-
'model_2': row[selected_models[1]],
|
62 |
-
'model1_name': selected_models[0],
|
63 |
-
'model2_name': selected_models[1]
|
64 |
-
}
|
65 |
-
self.current_index += 1
|
66 |
-
return battle_data
|
67 |
-
|
68 |
-
def record_evaluation(self, preferred_models, input_text, output1, output2, model1_name, model2_name):
|
69 |
-
"""Record user's model preference and update scores"""
|
70 |
-
self.model_scores[model1_name]['total_comparisons'] += 1
|
71 |
-
self.model_scores[model2_name]['total_comparisons'] += 1
|
72 |
-
|
73 |
-
if preferred_models == "Both Good":
|
74 |
-
self.model_scores[model1_name]['wins'] += 1
|
75 |
-
self.model_scores[model2_name]['wins'] += 1
|
76 |
-
elif preferred_models == "Model A": # Maps to first model
|
77 |
-
self.model_scores[model1_name]['wins'] += 1
|
78 |
-
elif preferred_models == "Model B": # Maps to second model
|
79 |
-
self.model_scores[model2_name]['wins'] += 1
|
80 |
-
# "Both Bad" case - no wins recorded
|
81 |
-
|
82 |
-
evaluation = {
|
83 |
-
'input_text': input_text,
|
84 |
-
'output1': output1,
|
85 |
-
'output2': output2,
|
86 |
-
'model1_name': model1_name,
|
87 |
-
'model2_name': model2_name,
|
88 |
-
'preferred_models': preferred_models
|
89 |
-
}
|
90 |
-
self.evaluation_results.append(evaluation)
|
91 |
-
|
92 |
-
return self.get_model_scores_df()
|
93 |
-
|
94 |
-
def get_model_scores_df(self):
|
95 |
-
"""Convert model scores to DataFrame"""
|
96 |
-
scores_data = []
|
97 |
-
for model, stats in self.model_scores.items():
|
98 |
-
win_rate = (stats['wins'] / stats['total_comparisons'] * 100) if stats['total_comparisons'] > 0 else 0
|
99 |
-
scores_data.append({
|
100 |
-
'Model': model,
|
101 |
-
'Wins': stats['wins'],
|
102 |
-
'Total Comparisons': stats['total_comparisons'],
|
103 |
-
'Win Rate (%)': round(win_rate, 2)
|
104 |
-
})
|
105 |
-
results_df = pd.DataFrame(scores_data).sort_values('Win Rate (%)', ascending=False)
|
106 |
-
|
107 |
-
# save the results in a huggingface dataset
|
108 |
-
if self.current_index % self.saving_freq == 0 and self.current_index > 0:
|
109 |
-
results_dataset = Dataset.from_pandas(results_df)
|
110 |
-
results_dataset.push_to_hub('atlasia/Res-Moroccan-Darija-LLM-Battle-Al-Atlas', private=True)
|
111 |
-
results_df.to_csv('human_eval_results.csv')
|
112 |
-
|
113 |
-
return results_df
|
114 |
-
|
115 |
-
|
116 |
-
def create_battle_arena(dataset_path, is_gif):
|
117 |
-
arena = LMBattleArena(dataset_path)
|
118 |
-
|
119 |
-
def battle_round():
|
120 |
-
battle_data = arena.get_next_battle_pair()
|
121 |
-
|
122 |
-
if battle_data is None:
|
123 |
-
return "No more texts to evaluate!", "", "", "", "", gr.DataFrame(visible=False)
|
124 |
-
|
125 |
-
return (
|
126 |
-
battle_data['prompt'],
|
127 |
-
battle_data['model_1'],
|
128 |
-
battle_data['model_2'],
|
129 |
-
battle_data['model1_name'],
|
130 |
-
battle_data['model2_name'],
|
131 |
-
gr.DataFrame(visible=True)
|
132 |
-
)
|
133 |
-
|
134 |
-
def submit_preference(input_text, output_1, output_2, model1_name, model2_name, preferred_models):
|
135 |
-
scores_df = arena.record_evaluation(
|
136 |
-
preferred_models, input_text, output_1, output_2, model1_name, model2_name
|
137 |
-
)
|
138 |
-
next_battle = battle_round()
|
139 |
-
return (*next_battle[:-1], scores_df)
|
140 |
-
|
141 |
-
with gr.Blocks(css="footer{display:none !important}") as demo:
|
142 |
-
|
143 |
-
base_path = os.path.dirname(__file__)
|
144 |
-
local_image_path = os.path.join(base_path, 'battle_leaderboard.gif')
|
145 |
-
gr.HTML(create_html_media(local_image_path, is_gif=is_gif))
|
146 |
-
|
147 |
-
with gr.Tabs():
|
148 |
-
with gr.Tab("Battle Arena"):
|
149 |
-
gr.Markdown("# 🤖 Pretrained SmolLMs Battle Arena")
|
150 |
-
|
151 |
-
input_text = gr.Textbox(
|
152 |
-
label="Input prompt",
|
153 |
-
interactive=False,
|
154 |
-
)
|
155 |
-
|
156 |
-
with gr.Row():
|
157 |
-
output_1 = gr.Textbox(
|
158 |
-
label="Model A",
|
159 |
-
interactive=False
|
160 |
-
)
|
161 |
-
model1_name = gr.State() # Hidden state for model1 name
|
162 |
-
|
163 |
-
with gr.Row():
|
164 |
-
output_2 = gr.Textbox(
|
165 |
-
label="Model B",
|
166 |
-
interactive=False
|
167 |
-
)
|
168 |
-
model2_name = gr.State() # Hidden state for model2 name
|
169 |
-
|
170 |
-
preferred_models = gr.Radio(
|
171 |
-
label="Which model is better?",
|
172 |
-
choices=["Model A", "Model B", "Both Good", "Both Bad"]
|
173 |
-
)
|
174 |
-
submit_btn = gr.Button("Vote", variant="primary")
|
175 |
-
|
176 |
-
scores_table = gr.DataFrame(
|
177 |
-
headers=['Model', 'Wins', 'Total Comparisons', 'Win Rate (%)'],
|
178 |
-
label="🏆 Leaderboard"
|
179 |
-
)
|
180 |
-
|
181 |
-
submit_btn.click(
|
182 |
-
submit_preference,
|
183 |
-
inputs=[input_text, output_1, output_2, model1_name, model2_name, preferred_models],
|
184 |
-
outputs=[input_text, output_1, output_2, model1_name, model2_name, scores_table]
|
185 |
-
)
|
186 |
-
|
187 |
-
demo.load(battle_round, outputs=[input_text, output_1, output_2, model1_name, model2_name, scores_table])
|
188 |
-
|
189 |
-
return demo
|
190 |
-
|
191 |
-
if __name__ == "__main__":
|
192 |
-
|
193 |
-
# load the existing dataset that contains outputs of the LMs
|
194 |
-
human_eval_dataset = load_dataset("atlasia/Moroccan-Darija-LLM-Battle-Al-Atlas", split='train').to_csv('human_eval_dataset.csv')
|
195 |
-
|
196 |
-
# precision
|
197 |
-
torch_dtype = torch.float16
|
198 |
-
|
199 |
-
# inference device
|
200 |
-
device = "cpu" #"cuda" if torch.cuda.is_available() else "cpu"
|
201 |
-
dataset_path = 'human_eval_dataset.csv'
|
202 |
-
is_gif = True
|
203 |
-
demo = create_battle_arena(dataset_path, is_gif)
|
204 |
demo.launch(debug=True)
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from collections import defaultdict
|
3 |
+
import os
|
4 |
+
import base64
|
5 |
+
import torch
|
6 |
+
from datasets import (
|
7 |
+
Dataset,
|
8 |
+
load_dataset,
|
9 |
+
)
|
10 |
+
import random
|
11 |
+
import pandas as pd
|
12 |
+
from collections import defaultdict
|
13 |
+
|
14 |
+
def encode_image_to_base64(image_path):
|
15 |
+
"""Encode an image or GIF file to base64."""
|
16 |
+
with open(image_path, "rb") as file:
|
17 |
+
encoded_string = base64.b64encode(file.read()).decode()
|
18 |
+
return encoded_string
|
19 |
+
|
20 |
+
def create_html_media(media_path, is_gif=False):
|
21 |
+
"""Create HTML for displaying an image or GIF."""
|
22 |
+
media_base64 = encode_image_to_base64(media_path)
|
23 |
+
media_type = "gif" if is_gif else "jpeg"
|
24 |
+
|
25 |
+
html_string = f"""
|
26 |
+
<div style="display: flex; justify-content: center; align-items: center; width: 100%; text-align: center;">
|
27 |
+
<div style="max-width: 450px; margin: auto;">
|
28 |
+
<img src="data:image/{media_type};base64,{media_base64}"
|
29 |
+
style="max-width: 75%; height: auto; display: block; margin: 0 auto; margin-top: 50px;"
|
30 |
+
alt="Displayed Media">
|
31 |
+
</div>
|
32 |
+
</div>
|
33 |
+
"""
|
34 |
+
return html_string
|
35 |
+
|
36 |
+
class LMBattleArena:
|
37 |
+
def __init__(self, dataset_path):
|
38 |
+
"""Initialize battle arena with dataset"""
|
39 |
+
self.df = pd.read_csv(dataset_path)
|
40 |
+
print(self.df.head())
|
41 |
+
self.current_index = 0
|
42 |
+
self.saving_freq = 10 # save the results in csv/push to hub every 10 evaluations
|
43 |
+
self.evaluation_results = []
|
44 |
+
self.model_scores = defaultdict(lambda: {'wins': 0, 'total_comparisons': 0})
|
45 |
+
|
46 |
+
def get_next_battle_pair(self):
|
47 |
+
"""Retrieve next pair of summaries for comparison"""
|
48 |
+
if self.current_index >= len(self.df):
|
49 |
+
return None
|
50 |
+
|
51 |
+
row = self.df.iloc[self.current_index]
|
52 |
+
model_summary_cols = [
|
53 |
+
col
|
54 |
+
for col in row.index
|
55 |
+
if col.upper() != 'PROMPT'
|
56 |
+
]
|
57 |
+
selected_models = random.sample(model_summary_cols, 2)
|
58 |
+
battle_data = {
|
59 |
+
'prompt': row['prompt'],
|
60 |
+
'model_1': row[selected_models[0]],
|
61 |
+
'model_2': row[selected_models[1]],
|
62 |
+
'model1_name': selected_models[0],
|
63 |
+
'model2_name': selected_models[1]
|
64 |
+
}
|
65 |
+
self.current_index += 1
|
66 |
+
return battle_data
|
67 |
+
|
68 |
+
def record_evaluation(self, preferred_models, input_text, output1, output2, model1_name, model2_name):
|
69 |
+
"""Record user's model preference and update scores"""
|
70 |
+
self.model_scores[model1_name]['total_comparisons'] += 1
|
71 |
+
self.model_scores[model2_name]['total_comparisons'] += 1
|
72 |
+
|
73 |
+
if preferred_models == "Both Good":
|
74 |
+
self.model_scores[model1_name]['wins'] += 1
|
75 |
+
self.model_scores[model2_name]['wins'] += 1
|
76 |
+
elif preferred_models == "Model A": # Maps to first model
|
77 |
+
self.model_scores[model1_name]['wins'] += 1
|
78 |
+
elif preferred_models == "Model B": # Maps to second model
|
79 |
+
self.model_scores[model2_name]['wins'] += 1
|
80 |
+
# "Both Bad" case - no wins recorded
|
81 |
+
|
82 |
+
evaluation = {
|
83 |
+
'input_text': input_text,
|
84 |
+
'output1': output1,
|
85 |
+
'output2': output2,
|
86 |
+
'model1_name': model1_name,
|
87 |
+
'model2_name': model2_name,
|
88 |
+
'preferred_models': preferred_models
|
89 |
+
}
|
90 |
+
self.evaluation_results.append(evaluation)
|
91 |
+
|
92 |
+
return self.get_model_scores_df()
|
93 |
+
|
94 |
+
def get_model_scores_df(self):
|
95 |
+
"""Convert model scores to DataFrame"""
|
96 |
+
scores_data = []
|
97 |
+
for model, stats in self.model_scores.items():
|
98 |
+
win_rate = (stats['wins'] / stats['total_comparisons'] * 100) if stats['total_comparisons'] > 0 else 0
|
99 |
+
scores_data.append({
|
100 |
+
'Model': model,
|
101 |
+
'Wins': stats['wins'],
|
102 |
+
'Total Comparisons': stats['total_comparisons'],
|
103 |
+
'Win Rate (%)': round(win_rate, 2)
|
104 |
+
})
|
105 |
+
results_df = pd.DataFrame(scores_data).sort_values('Win Rate (%)', ascending=False)
|
106 |
+
|
107 |
+
# save the results in a huggingface dataset
|
108 |
+
if self.current_index % self.saving_freq == 0 and self.current_index > 0:
|
109 |
+
# results_dataset = Dataset.from_pandas(results_df)
|
110 |
+
# results_dataset.push_to_hub('atlasia/Res-Moroccan-Darija-LLM-Battle-Al-Atlas', private=True)
|
111 |
+
results_df.to_csv('human_eval_results.csv')
|
112 |
+
|
113 |
+
return results_df
|
114 |
+
|
115 |
+
|
116 |
+
def create_battle_arena(dataset_path, is_gif):
|
117 |
+
arena = LMBattleArena(dataset_path)
|
118 |
+
|
119 |
+
def battle_round():
|
120 |
+
battle_data = arena.get_next_battle_pair()
|
121 |
+
|
122 |
+
if battle_data is None:
|
123 |
+
return "No more texts to evaluate!", "", "", "", "", gr.DataFrame(visible=False)
|
124 |
+
|
125 |
+
return (
|
126 |
+
battle_data['prompt'],
|
127 |
+
battle_data['model_1'],
|
128 |
+
battle_data['model_2'],
|
129 |
+
battle_data['model1_name'],
|
130 |
+
battle_data['model2_name'],
|
131 |
+
gr.DataFrame(visible=True)
|
132 |
+
)
|
133 |
+
|
134 |
+
def submit_preference(input_text, output_1, output_2, model1_name, model2_name, preferred_models):
|
135 |
+
scores_df = arena.record_evaluation(
|
136 |
+
preferred_models, input_text, output_1, output_2, model1_name, model2_name
|
137 |
+
)
|
138 |
+
next_battle = battle_round()
|
139 |
+
return (*next_battle[:-1], scores_df)
|
140 |
+
|
141 |
+
with gr.Blocks(css="footer{display:none !important}") as demo:
|
142 |
+
|
143 |
+
base_path = os.path.dirname(__file__)
|
144 |
+
local_image_path = os.path.join(base_path, 'battle_leaderboard.gif')
|
145 |
+
gr.HTML(create_html_media(local_image_path, is_gif=is_gif))
|
146 |
+
|
147 |
+
with gr.Tabs():
|
148 |
+
with gr.Tab("Battle Arena"):
|
149 |
+
gr.Markdown("# 🤖 Pretrained SmolLMs Battle Arena")
|
150 |
+
|
151 |
+
input_text = gr.Textbox(
|
152 |
+
label="Input prompt",
|
153 |
+
interactive=False,
|
154 |
+
)
|
155 |
+
|
156 |
+
with gr.Row():
|
157 |
+
output_1 = gr.Textbox(
|
158 |
+
label="Model A",
|
159 |
+
interactive=False
|
160 |
+
)
|
161 |
+
model1_name = gr.State() # Hidden state for model1 name
|
162 |
+
|
163 |
+
with gr.Row():
|
164 |
+
output_2 = gr.Textbox(
|
165 |
+
label="Model B",
|
166 |
+
interactive=False
|
167 |
+
)
|
168 |
+
model2_name = gr.State() # Hidden state for model2 name
|
169 |
+
|
170 |
+
preferred_models = gr.Radio(
|
171 |
+
label="Which model is better?",
|
172 |
+
choices=["Model A", "Model B", "Both Good", "Both Bad"]
|
173 |
+
)
|
174 |
+
submit_btn = gr.Button("Vote", variant="primary")
|
175 |
+
|
176 |
+
scores_table = gr.DataFrame(
|
177 |
+
headers=['Model', 'Wins', 'Total Comparisons', 'Win Rate (%)'],
|
178 |
+
label="🏆 Leaderboard"
|
179 |
+
)
|
180 |
+
|
181 |
+
submit_btn.click(
|
182 |
+
submit_preference,
|
183 |
+
inputs=[input_text, output_1, output_2, model1_name, model2_name, preferred_models],
|
184 |
+
outputs=[input_text, output_1, output_2, model1_name, model2_name, scores_table]
|
185 |
+
)
|
186 |
+
|
187 |
+
demo.load(battle_round, outputs=[input_text, output_1, output_2, model1_name, model2_name, scores_table])
|
188 |
+
|
189 |
+
return demo
|
190 |
+
|
191 |
+
if __name__ == "__main__":
|
192 |
+
|
193 |
+
# load the existing dataset that contains outputs of the LMs
|
194 |
+
human_eval_dataset = load_dataset("atlasia/Moroccan-Darija-LLM-Battle-Al-Atlas", split='train').to_csv('human_eval_dataset.csv')
|
195 |
+
|
196 |
+
# precision
|
197 |
+
torch_dtype = torch.float16
|
198 |
+
|
199 |
+
# inference device
|
200 |
+
device = "cpu" #"cuda" if torch.cuda.is_available() else "cpu"
|
201 |
+
dataset_path = 'human_eval_dataset.csv'
|
202 |
+
is_gif = True
|
203 |
+
demo = create_battle_arena(dataset_path, is_gif)
|
204 |
demo.launch(debug=True)
|