import base64 from fasttext import load_model from huggingface_hub import hf_hub_download import os import json import pandas as pd from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix, balanced_accuracy_score, matthews_corrcoef import numpy as np from datasets import load_dataset import fasttext # Constants MODEL_REPO = "atlasia/Sfaya-Moroccan-Darija-vs-All" BIN_FILENAME = "model_multi_v3_2fpr.bin" BINARY_LEADERBOARD_FILE = "darija_leaderboard_binary.json" MULTILINGUAL_LEADERBOARD_FILE = "darija_leaderboard_multilingual.json" DATA_PATH = "atlasia/No-Arabic-Dialect-Left-Behind-Filtered-Balanced" target_label = "Morocco" is_binary = False metrics = [ 'f1_score', 'precision', 'recall', 'specificity', 'false_positive_rate', 'false_negative_rate', 'negative_predictive_value', 'n_test_samples', ] default_metrics = [ 'f1_score', 'precision', 'recall', 'false_positive_rate', 'false_negative_rate' ] language_mapping_dict = { 'ace_Arab': 'Acehnese', 'acm_Arab': 'Mesopotamia', # 'Gilit Mesopotamian' 'aeb_Arab': 'Tunisia', 'ajp_Arab': 'Levantine', # 'South Levantine' 'apc_Arab': 'Levantine', 'arb_Arab': 'MSA', 'arq_Arab': 'Algeria', 'ars_Arab': 'Saudi', # Najdi is primarily Saudi Arabian 'ary_Arab': 'Morocco', 'arz_Arab': 'Egypt', 'ayp_Arab': 'Mesopotamia', # 'North Mesopotamian' 'azb_Arab': 'Azerbaijan', # South Azerbaijani pertains to this region 'bcc_Arab': 'Balochistan', # Southern Balochi is from Balochistan 'bjn_Arab': 'Indonesia', # Banjar is spoken in Indonesia 'brh_Arab': 'Pakistan', # Brahui is spoken in Pakistan 'ckb_Arab': 'Kurdistan', # Central Kurdish is mainly in Iraq 'fuv_Arab': 'Nigeria', # Hausa States Fulfulde 'glk_Arab': 'Iran', # Gilaki is spoken in Iran 'hac_Arab': 'Iran', # Gurani is also primarily spoken in Iran 'kas_Arab': 'Kashmir', 'knc_Arab': 'Nigeria', # Central Kanuri is in Nigeria 'lki_Arab': 'Iran', # Laki is from Iran 'lrc_Arab': 'Iran', # Northern Luri is from Iran 'min_Arab': 'Indonesia', # Minangkabau is spoken in Indonesia 'mzn_Arab': 'Iran', # Mazanderani is spoken in Iran 'ota_Arab': 'Turkey', # Ottoman Turkish 'pbt_Arab': 'Afghanistan', # Southern Pashto 'pnb_Arab': 'Pakistan', # Western Panjabi 'sdh_Arab': 'Iraq', # Southern Kurdish 'shu_Arab': 'Chad', # Chadian Arabic 'skr_Arab': 'Pakistan', # Saraiki 'snd_Arab': 'Pakistan', # Sindhi 'sus_Arab': 'Guinea', # Susu 'tuk_Arab': 'Turkmenistan', # Turkmen 'uig_Arab': 'Uighur (China)', # Uighur 'urd_Arab': 'Pakistan', # Urdu 'uzs_Arab': 'Uzbekistan', # Southern Uzbek 'zsm_Arab': 'Malaysia' # Standard Malay } def predict_label(text, model, language_mapping_dict, use_mapping=False): # Remove any newline characters and strip whitespace text = str(text).strip().replace('\n', ' ') if text == '': return 'Other' try: # Get top prediction prediction = model.predict(text, 1) # Extract label and remove __label__ prefix label = prediction[0][0].replace('__label__', '') # Extract confidence score confidence = prediction[1][0] # map label to language using language_mapping_dict if use_mapping: label = language_mapping_dict.get(label, 'Other') return label except Exception as e: print(f"Error processing text: {text}") print(f"Exception: {e}") return {'prediction_label': 'Error', 'prediction_confidence': 0.0} def compute_classification_metrics(test_dataset): """ Compute comprehensive classification metrics for each class. Args: data (pd.DataFrame): DataFrame containing 'dialect' as true labels and 'preds' as predicted labels. Returns: pd.DataFrame: DataFrame with detailed metrics for each class. """ # transform the dataset into a DataFrame data = pd.DataFrame(test_dataset) # Extract true labels and predictions true_labels = list(data['dialect']) predicted_labels = list(data['preds']) # Handle all unique labels labels = sorted(list(set(true_labels + predicted_labels))) label_to_index = {label: index for index, label in enumerate(labels)} # Convert labels to indices true_indices = [label_to_index[label] for label in true_labels] pred_indices = [label_to_index[label] for label in predicted_labels] # Compute basic metrics f1_scores = f1_score(true_indices, pred_indices, average=None, labels=range(len(labels))) precision_scores = precision_score(true_indices, pred_indices, average=None, labels=range(len(labels))) recall_scores = recall_score(true_indices, pred_indices, average=None, labels=range(len(labels))) # Compute confusion matrix conf_mat = confusion_matrix(true_indices, pred_indices, labels=range(len(labels))) # Calculate various metrics per class FP = conf_mat.sum(axis=0) - np.diag(conf_mat) # False Positives FN = conf_mat.sum(axis=1) - np.diag(conf_mat) # False Negatives TP = np.diag(conf_mat) # True Positives TN = conf_mat.sum() - (FP + FN + TP) # True Negatives # Calculate sample counts per class samples_per_class = np.bincount(true_indices, minlength=len(labels)) # Calculate additional metrics with np.errstate(divide='ignore', invalid='ignore'): fp_rate = FP / (FP + TN) # False Positive Rate fn_rate = FN / (FN + TP) # False Negative Rate specificity = TN / (TN + FP) # True Negative Rate npv = TN / (TN + FN) # Negative Predictive Value # Replace NaN/inf with 0 metrics = [fp_rate, fn_rate, specificity, npv] metrics = [np.nan_to_num(m, nan=0.0, posinf=0.0, neginf=0.0) for m in metrics] fp_rate, fn_rate, specificity, npv = metrics # Calculate overall metrics balanced_acc = balanced_accuracy_score(true_indices, pred_indices) mcc = matthews_corrcoef(true_indices, pred_indices) # Compile results into a DataFrame result_df = pd.DataFrame({ 'country': labels, 'samples': samples_per_class, 'f1_score': f1_scores, 'precision': precision_scores, 'recall': recall_scores, 'specificity': specificity, 'false_positive_rate': fp_rate, 'false_negative_rate': fn_rate, 'true_positives': TP, 'false_positives': FP, 'true_negatives': TN, 'false_negatives': FN, 'negative_predictive_value': npv }) # Sort by number of samples (descending) result_df = result_df.sort_values('samples', ascending=False) # Calculate and add summary metrics summary_metrics = { 'macro_f1': f1_score(true_indices, pred_indices, average='macro'), 'weighted_f1': f1_score(true_indices, pred_indices, average='weighted'), 'micro_f1': f1_score(true_indices, pred_indices, average='micro'), 'balanced_accuracy': balanced_acc, 'matthews_correlation': mcc } # Format all numeric columns to 4 decimal places numeric_cols = result_df.select_dtypes(include=[np.number]).columns result_df[numeric_cols] = result_df[numeric_cols].round(4) print(f'result_df: {result_df}') return result_df, summary_metrics def make_binary(dialect, target): if dialect != target: return 'Other' return target def run_eval_one_vs_all(model, data_test, TARGET_LANG='Morocco', language_mapping_dict=None, use_mapping=False): # Predict labels using the model print(f"[INFO] Running predictions...") data_test['preds'] = data_test['text'].apply(lambda text: predict_label(text, model, language_mapping_dict, use_mapping=use_mapping)) # map to binary df_test_preds = data_test.copy() df_test_preds.loc[df_test_preds['dialect'] == TARGET_LANG, 'dialect'] = TARGET_LANG df_test_preds.loc[df_test_preds['dialect'] != TARGET_LANG, 'dialect'] = 'Other' # compute the fpr per dialect dialect_counts = data_test.groupby('dialect')['dialect'].count().reset_index(name='size') result_df = pd.merge(dialect_counts, data_test, on='dialect') result_df = result_df.groupby(['dialect', 'size', 'preds'])['preds'].count()/result_df.groupby(['dialect', 'size'])['preds'].count() result_df.sort_index(ascending=False, level='size', inplace=True) # group by dialect and get the false positive rate out = result_df.copy() out.name = 'false_positive_rate' out = out.reset_index() out = out[out['preds']==TARGET_LANG].drop(columns=['preds', 'size']) return out def update_darija_binary_leaderboard(result_df, model_name, BINARY_LEADERBOARD_FILE="darija_leaderboard_binary.json"): try: with open(BINARY_LEADERBOARD_FILE, "r") as f: data = json.load(f) except FileNotFoundError: data = [] # Process the results for each dialect/country for _, row in result_df.iterrows(): country = row['dialect'] # skip 'Other' class, it is considered as the null space if country == 'Other': continue # Find existing country entry or create new one country_entry = next((item for item in data if country in item), None) if country_entry is None: country_entry = {country: {}} data.append(country_entry) # Update the model metrics directly under the model name if country not in country_entry: country_entry[country] = {} country_entry[country][model_name] = float(row['false_positive_rate']) if country_entry[country].get("n_test_samples") is None: country_entry[country]["n_test_samples"] = int(row['size']) # Save updated leaderboard data with open(MULTILINGUAL_LEADERBOARD_FILE, "w") as f: json.dump(data, f, indent=4) def handle_evaluation(model_path, model_path_bin, use_mapping=False): # run the evaluation result_df, _ = run_eval(model_path, model_path_bin, language_mapping_dict, use_mapping=use_mapping) # set the model name model_name = model_path + '/' + model_path_bin # update the leaderboard update_darija_multilingual_leaderboard(result_df, model_name, MULTILINGUAL_LEADERBOARD_FILE) # update the leaderboard table df = load_leaderboard_multilingual() return create_leaderboard_display_multilingual(df, 'Morocco', default_metrics) def run_eval(model_path, model_path_bin, language_mapping_dict=None, use_mapping=False): """Run evaluation on a dataset and compute metrics. Args: model: The model to evaluate. DATA_PATH (str): Path to the dataset. is_binary (bool): If True, evaluate as binary classification. If False, evaluate as multi-class classification. target_label (str): The target class label in binary mode. Returns: pd.DataFrame: A DataFrame containing evaluation metrics. """ # download model and get the model path model_path = hf_hub_download(repo_id=model_path, filename=model_path_bin, cache_dir=None) # Load the trained model print(f"[INFO] Loading model from Path: {model_path}, using version {model_path_bin}...") model = fasttext.load_model(model_path) # Load the evaluation dataset print(f"[INFO] Loading evaluation dataset from Path: atlasia/No-Arabic-Dialect-Left-Behind-Filtered-Balanced...") eval_dataset = load_dataset("atlasia/No-Arabic-Dialect-Left-Behind-Filtered-Balanced", split='test') # Transform to pandas DataFrame print(f"[INFO] Converting evaluation dataset to Pandas DataFrame...") df_eval = pd.DataFrame(eval_dataset) # Predict labels using the model print(f"[INFO] Running predictions...") df_eval['preds'] = df_eval['text'].apply(lambda text: predict_label(text, model, language_mapping_dict, use_mapping=use_mapping)) # now drop the columns that are not needed, i.e. 'text' df_eval = df_eval.drop(columns=['text', 'metadata', 'dataset_source']) # Compute evaluation metrics print(f"[INFO] Computing metrics...") result_df, _ = compute_classification_metrics(df_eval) # update_darija_multilingual_leaderboard(result_df, model_path, MULTILINGUAL_LEADERBOARD_FILE) return result_df, df_eval def process_results_file(file, uploaded_model_name, base_path_save="./atlasia/submissions/"): try: if file is None: return "Please upload a file." # Clean the model name to be safe for file paths uploaded_model_name = uploaded_model_name.strip().replace(" ", "_") print(f"[INFO] uploaded_model_name: {uploaded_model_name}") # Create the directory for saving submissions path_saving = os.path.join(base_path_save, uploaded_model_name) os.makedirs(path_saving, exist_ok=True) # Define the full path to save the file saved_file_path = os.path.join(path_saving, 'submission.csv') # Read the uploaded file as DataFrame print(f"[INFO] Loading results...") df_eval = pd.read_csv(file.name) # Save the DataFrame print(f"[INFO] Saving the file locally in: {saved_file_path}") df_eval.to_csv(saved_file_path, index=False) except Exception as e: return f"Error processing file: {str(e)}" # Compute evaluation metrics print(f"[INFO] Computing metrics...") result_df, _ = compute_classification_metrics(df_eval) # Update the leaderboards update_darija_multilingual_leaderboard(result_df, uploaded_model_name, MULTILINGUAL_LEADERBOARD_FILE) # result_df_binary = run_eval_one_vs_all(model, data_test, TARGET_LANG='Morocco', language_mapping_dict=None, use_mapping=False) # update_darija_binary_leaderboard(result_df, uploaded_model_name, BINARY_LEADERBOARD_FILE) # update the leaderboard table df = load_leaderboard_multilingual() return create_leaderboard_display_multilingual(df, 'Morocco', default_metrics) def update_darija_multilingual_leaderboard(result_df, model_name, MULTILINGUAL_LEADERBOARD_FILE="darija_leaderboard_multilingual.json"): # Load leaderboard data current_dir = os.path.dirname(os.path.abspath(__file__)) MULTILINGUAL_LEADERBOARD_FILE = os.path.join(current_dir, MULTILINGUAL_LEADERBOARD_FILE) try: with open(MULTILINGUAL_LEADERBOARD_FILE, "r") as f: data = json.load(f) except FileNotFoundError: data = [] # Process the results for each dialect/country for _, row in result_df.iterrows(): country = row['country'] # skip 'Other' class, it is considered as the null space if country == 'Other': continue # Create metrics dictionary directly metrics = { 'f1_score': float(row['f1_score']), 'precision': float(row['precision']), 'recall': float(row['recall']), 'specificity': float(row['specificity']), 'false_positive_rate': float(row['false_positive_rate']), 'false_negative_rate': float(row['false_negative_rate']), 'negative_predictive_value': float(row['negative_predictive_value']), 'n_test_samples': int(row['samples']) } # Find existing country entry or create new one country_entry = next((item for item in data if country in item), None) if country_entry is None: country_entry = {country: {}} data.append(country_entry) # Update the model metrics directly under the model name if country not in country_entry: country_entry[country] = {} country_entry[country][model_name] = metrics # Save updated leaderboard data with open(MULTILINGUAL_LEADERBOARD_FILE, "w") as f: json.dump(data, f, indent=4) def load_leaderboard_multilingual(MULTILINGUAL_LEADERBOARD_FILE="darija_leaderboard_multilingual.json"): current_dir = os.path.dirname(os.path.abspath(__file__)) MULTILINGUAL_LEADERBOARD_FILE = os.path.join(current_dir, MULTILINGUAL_LEADERBOARD_FILE) with open(MULTILINGUAL_LEADERBOARD_FILE, "r") as f: data = json.load(f) # Initialize lists to store the flattened data rows = [] # Process each country's data for country_data in data: for country, models in country_data.items(): for model_name, metrics in models.items(): row = { 'country': country, 'model': model_name, } # Add all metrics to the row row.update(metrics) rows.append(row) # Convert to DataFrame df = pd.DataFrame(rows) return df def create_leaderboard_display_multilingual(df, selected_country, selected_metrics): # Filter by country if specified if selected_country and selected_country.upper() != 'ALL': print(f"Filtering leaderboard by country: {selected_country}") df = df[df['country'] == selected_country] df = df.drop(columns=['country']) # Select only the chosen metrics (plus 'model' column) columns_to_show = ['model'] + [metric for metric in selected_metrics if metric in df.columns] else: # Select all metrics (plus 'country' and 'model' columns), if no country is selected or 'All' is selected for ease of comparison columns_to_show = ['model', 'country'] + selected_metrics # Sort by first selected metric by default if selected_metrics: df = df.sort_values(by=selected_metrics[0], ascending=False) df = df[columns_to_show] # Format numeric columns to 4 decimal places numeric_cols = df.select_dtypes(include=['float64']).columns df[numeric_cols] = df[numeric_cols].round(4) return df def update_leaderboard_multilingual(country, selected_metrics): if not selected_metrics: # If no metrics selected, show all selected_metrics = metrics df = load_leaderboard_multilingual() display_df = create_leaderboard_display_multilingual(df, country, selected_metrics) return display_df def encode_image_to_base64(image_path): with open(image_path, "rb") as image_file: encoded_string = base64.b64encode(image_file.read()).decode() return encoded_string def create_html_image(image_path): # Get base64 string of image img_base64 = encode_image_to_base64(image_path) # Create HTML string with embedded image and centering styles html_string = f"""