Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
|
3 |
+
import os
|
4 |
+
|
5 |
+
# Define model paths
|
6 |
+
MODEL_PATHS = {
|
7 |
+
"Terjman-Nano-v2": "BounharAbdelaziz/Terjman-Nano-v2.0",
|
8 |
+
"Terjman-Large-v2": "BounharAbdelaziz/Terjman-Large-v2.0",
|
9 |
+
"Terjman-Ultra-v2": "BounharAbdelaziz/Terjman-Ultra-v2.0",
|
10 |
+
"Terjman-Supreme-v2": "BounharAbdelaziz/Terjman-Supreme-v2.0"
|
11 |
+
}
|
12 |
+
|
13 |
+
|
14 |
+
# Translation function for Nano and Large models
|
15 |
+
def translate_nano_large(text, model_path):
|
16 |
+
translator = pipeline("translation", model=model_path)
|
17 |
+
translated = translator(
|
18 |
+
text,
|
19 |
+
max_length=512,
|
20 |
+
num_beams=4,
|
21 |
+
no_repeat_ngram_size=3,
|
22 |
+
early_stopping=True,
|
23 |
+
do_sample=False,
|
24 |
+
pad_token_id=translator.tokenizer.pad_token_id,
|
25 |
+
bos_token_id=translator.tokenizer.bos_token_id,
|
26 |
+
eos_token_id=translator.tokenizer.eos_token_id
|
27 |
+
)
|
28 |
+
return translated[0]["translation_text"]
|
29 |
+
|
30 |
+
# Translation function for Ultra and Supreme models
|
31 |
+
def translate_ultra_supreme(text, model_path):
|
32 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, src_lang="eng_Latn", tgt_lang="ary_Arab")
|
34 |
+
translator = pipeline(
|
35 |
+
"translation",
|
36 |
+
model=model,
|
37 |
+
tokenizer=tokenizer,
|
38 |
+
max_length=512,
|
39 |
+
src_lang="eng_Latn",
|
40 |
+
tgt_lang="ary_Arab"
|
41 |
+
)
|
42 |
+
translation = translator(text)[0]['translation_text']
|
43 |
+
return translation
|
44 |
+
|
45 |
+
# Main translation function
|
46 |
+
def translate_text(text, model_choice):
|
47 |
+
model_path = MODEL_PATHS[model_choice]
|
48 |
+
if model_choice in ["Terjman-Nano-v2", "Terjman-Large-v2"]:
|
49 |
+
return translate_nano_large(text, model_path)
|
50 |
+
elif model_choice in ["Terjman-Ultra-v2", "Terjman-Supreme-v2"]:
|
51 |
+
return translate_ultra_supreme(text, model_path)
|
52 |
+
else:
|
53 |
+
return "Invalid model selection."
|
54 |
+
|
55 |
+
# Gradio app
|
56 |
+
def gradio_app():
|
57 |
+
with gr.Blocks() as app:
|
58 |
+
gr.Markdown("# 🇲🇦 Terjman-v2")
|
59 |
+
gr.Markdown("Choose a model and enter the English text you want to translate to Moroccan Darija.")
|
60 |
+
|
61 |
+
model_choice = gr.Dropdown(
|
62 |
+
label="Select Model",
|
63 |
+
choices=["Terjman-Nano-v2", "Terjman-Large-v2", "Terjman-Ultra-v2", "Terjman-Supreme-v2"],
|
64 |
+
value="Terjman-Ultra-v2"
|
65 |
+
)
|
66 |
+
input_text = gr.Textbox(label="Input Text", placeholder="Enter text to translate...", lines=3)
|
67 |
+
output_text = gr.Textbox(label="Translated Text", interactive=False, lines=3)
|
68 |
+
translate_button = gr.Button("Translate")
|
69 |
+
|
70 |
+
# Link input and output
|
71 |
+
translate_button.click(
|
72 |
+
fn=translate_text,
|
73 |
+
inputs=[input_text, model_choice],
|
74 |
+
outputs=output_text
|
75 |
+
)
|
76 |
+
|
77 |
+
return app
|
78 |
+
|
79 |
+
# Run the app
|
80 |
+
if __name__ == "__main__":
|
81 |
+
app = gradio_app()
|
82 |
+
app.launch()
|