Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,22 @@
|
|
1 |
import os
|
2 |
-
|
3 |
import torch
|
4 |
-
import
|
5 |
from torchvision.transforms import Compose, ToTensor, Resize, Normalize, ConvertImageDtype
|
6 |
-
|
7 |
import numpy as np
|
8 |
-
import cv2
|
9 |
|
10 |
import gradio as gr
|
11 |
-
from huggingface_hub import hf_hub_download
|
12 |
-
|
13 |
from model import IAT
|
14 |
|
15 |
-
|
16 |
def set_example_image(example: list) -> dict:
|
17 |
return gr.Image.update(value=example[0])
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def dark_inference(img):
|
21 |
model = IAT()
|
@@ -34,9 +35,11 @@ def dark_inference(img):
|
|
34 |
input_img = transform(img)
|
35 |
print(f'Image shape: {input_img.shape}')
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
40 |
|
41 |
def exposure_inference(img):
|
42 |
model = IAT()
|
@@ -49,14 +52,17 @@ def exposure_inference(img):
|
|
49 |
transform = Compose([
|
50 |
ToTensor(),
|
51 |
Resize(384),
|
|
|
52 |
ConvertImageDtype(torch.float)
|
53 |
])
|
54 |
input_img = transform(img)
|
55 |
print(f'Image shape: {input_img.shape}')
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
60 |
|
61 |
demo = gr.Blocks()
|
62 |
with demo:
|
@@ -77,7 +83,7 @@ with demo:
|
|
77 |
with gr.Row():
|
78 |
exposure_button = gr.Button('Exposure Correction')
|
79 |
with gr.Column():
|
80 |
-
res_image = gr.Image(type='numpy', label='
|
81 |
with gr.Row():
|
82 |
dark_example_images = gr.Dataset(
|
83 |
components=[input_image],
|
@@ -100,4 +106,4 @@ with demo:
|
|
100 |
dark_example_images.click(fn=set_example_image, inputs=dark_example_images, outputs=dark_example_images.components)
|
101 |
exposure_example_images.click(fn=set_example_image, inputs=exposure_example_images, outputs=exposure_example_images.components)
|
102 |
|
103 |
-
demo.launch(enable_queue=True)
|
|
|
1 |
import os
|
|
|
2 |
import torch
|
3 |
+
import cv2
|
4 |
from torchvision.transforms import Compose, ToTensor, Resize, Normalize, ConvertImageDtype
|
5 |
+
from PIL import Image
|
6 |
import numpy as np
|
|
|
7 |
|
8 |
import gradio as gr
|
|
|
|
|
9 |
from model import IAT
|
10 |
|
|
|
11 |
def set_example_image(example: list) -> dict:
|
12 |
return gr.Image.update(value=example[0])
|
13 |
|
14 |
+
def tensor_to_numpy(tensor):
|
15 |
+
tensor = tensor.detach().cpu().numpy()
|
16 |
+
if tensor.ndim == 3 and tensor.shape[0] == 3: # Convert CHW to HWC
|
17 |
+
tensor = tensor.transpose(1, 2, 0)
|
18 |
+
tensor = np.clip(tensor * 255, 0, 255).astype(np.uint8) # Ensure the output is uint8
|
19 |
+
return tensor
|
20 |
|
21 |
def dark_inference(img):
|
22 |
model = IAT()
|
|
|
35 |
input_img = transform(img)
|
36 |
print(f'Image shape: {input_img.shape}')
|
37 |
|
38 |
+
with torch.no_grad():
|
39 |
+
enhanced_img = model(input_img.unsqueeze(0))
|
40 |
+
|
41 |
+
result_img = tensor_to_numpy(enhanced_img[0])
|
42 |
+
return result_img
|
43 |
|
44 |
def exposure_inference(img):
|
45 |
model = IAT()
|
|
|
52 |
transform = Compose([
|
53 |
ToTensor(),
|
54 |
Resize(384),
|
55 |
+
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
56 |
ConvertImageDtype(torch.float)
|
57 |
])
|
58 |
input_img = transform(img)
|
59 |
print(f'Image shape: {input_img.shape}')
|
60 |
|
61 |
+
with torch.no_grad():
|
62 |
+
enhanced_img = model(input_img.unsqueeze(0))
|
63 |
+
|
64 |
+
result_img = tensor_to_numpy(enhanced_img[0])
|
65 |
+
return result_img
|
66 |
|
67 |
demo = gr.Blocks()
|
68 |
with demo:
|
|
|
83 |
with gr.Row():
|
84 |
exposure_button = gr.Button('Exposure Correction')
|
85 |
with gr.Column():
|
86 |
+
res_image = gr.Image(type='numpy', label='Results')
|
87 |
with gr.Row():
|
88 |
dark_example_images = gr.Dataset(
|
89 |
components=[input_image],
|
|
|
106 |
dark_example_images.click(fn=set_example_image, inputs=dark_example_images, outputs=dark_example_images.components)
|
107 |
exposure_example_images.click(fn=set_example_image, inputs=exposure_example_images, outputs=exposure_example_images.components)
|
108 |
|
109 |
+
demo.launch(enable_queue=True)
|