Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ultralytics import YOLO
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load the document segmentation model
|
7 |
+
docseg_model = YOLO("https://huggingface.co/DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet/blob/main/yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt")
|
8 |
+
|
9 |
+
def process_image(image):
|
10 |
+
# Convert image to the format YOLO model expects
|
11 |
+
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
12 |
+
results = docseg_model(source=image, save=False, show_labels=True, show_conf=True, show_boxes=True)
|
13 |
+
|
14 |
+
# Extract annotated image from results
|
15 |
+
annotated_img = results[0].plot()
|
16 |
+
|
17 |
+
return annotated_img, results[0].boxes
|
18 |
+
|
19 |
+
# Define the Gradio interface
|
20 |
+
interface = gr.Interface(
|
21 |
+
fn=process_image,
|
22 |
+
inputs=gr.inputs.Image(type="pil"),
|
23 |
+
outputs=[gr.outputs.Image(type="pil", label="Annotated Image"),
|
24 |
+
gr.outputs.Textbox(label="Detected Areas and Labels")]
|
25 |
+
)
|
26 |
+
|
27 |
+
if __name__ == "__main__":
|
28 |
+
interface.launch()
|