import gradio as gr from ultralytics import YOLO import cv2 import numpy as np import os import requests import torch # Ensure the model file is in the correct location model_path = "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt" if not os.path.exists(model_path): # Download the model file if it doesn't exist model_url = "https://huggingface.co/DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet/resolve/main/yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt" response = requests.get(model_url) with open(model_path, "wb") as f: f.write(response.content) # Load the document segmentation model on CPU device = torch.device('cpu') docseg_model = YOLO(model_path).to(device) def process_image(image): # Convert image to the format YOLO model expects image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) results = docseg_model(image) # Extract annotated image from results annotated_img = results[0].plot() annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB) # Prepare detected areas and labels as text output detected_areas_labels = "\n".join( [f"{box.label}: {box.conf:.2f}" for box in results[0].boxes] ) return annotated_img, detected_areas_labels # Define the Gradio interface interface = gr.Interface( fn=process_image, inputs=gr.Image(type="pil"), outputs=[gr.Image(type="pil", label="Annotated Image"), gr.Textbox(label="Detected Areas and Labels")] ) if __name__ == "__main__": interface.launch()