diff --git "a/src/unet_block_hacked_garmnet.py" "b/src/unet_block_hacked_garmnet.py"
deleted file mode 100644--- "a/src/unet_block_hacked_garmnet.py"
+++ /dev/null
@@ -1,3579 +0,0 @@
-# Copyright 2023 The HuggingFace Team. All rights reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-#     http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-from typing import Any, Dict, Optional, Tuple, Union
-
-import numpy as np
-import torch
-import torch.nn.functional as F
-from torch import nn
-
-from diffusers.utils import is_torch_version, logging
-from diffusers.utils.torch_utils import apply_freeu
-from diffusers.models.activations import get_activation
-from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
-from diffusers.models.dual_transformer_2d import DualTransformer2DModel
-from diffusers.models.normalization import AdaGroupNorm
-from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
-from src.transformerhacked_garmnet import Transformer2DModel
-from einops import rearrange
-
-logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
-
-
-def get_down_block(
-    down_block_type: str,
-    num_layers: int,
-    in_channels: int,
-    out_channels: int,
-    temb_channels: int,
-    add_downsample: bool,
-    resnet_eps: float,
-    resnet_act_fn: str,
-    transformer_layers_per_block: int = 1,
-    num_attention_heads: Optional[int] = None,
-    resnet_groups: Optional[int] = None,
-    cross_attention_dim: Optional[int] = None,
-    downsample_padding: Optional[int] = None,
-    dual_cross_attention: bool = False,
-    use_linear_projection: bool = False,
-    only_cross_attention: bool = False,
-    upcast_attention: bool = False,
-    resnet_time_scale_shift: str = "default",
-    attention_type: str = "default",
-    resnet_skip_time_act: bool = False,
-    resnet_out_scale_factor: float = 1.0,
-    cross_attention_norm: Optional[str] = None,
-    attention_head_dim: Optional[int] = None,
-    downsample_type: Optional[str] = None,
-    dropout: float = 0.0,
-):
-    # If attn head dim is not defined, we default it to the number of heads
-    if attention_head_dim is None:
-        logger.warn(
-            f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
-        )
-        attention_head_dim = num_attention_heads
-
-    down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
-    if down_block_type == "DownBlock2D":
-        return DownBlock2D(
-            num_layers=num_layers,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            temb_channels=temb_channels,
-            dropout=dropout,
-            add_downsample=add_downsample,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-            resnet_groups=resnet_groups,
-            downsample_padding=downsample_padding,
-            resnet_time_scale_shift=resnet_time_scale_shift,
-        )
-    elif down_block_type == "ResnetDownsampleBlock2D":
-        return ResnetDownsampleBlock2D(
-            num_layers=num_layers,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            temb_channels=temb_channels,
-            dropout=dropout,
-            add_downsample=add_downsample,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-            resnet_groups=resnet_groups,
-            resnet_time_scale_shift=resnet_time_scale_shift,
-            skip_time_act=resnet_skip_time_act,
-            output_scale_factor=resnet_out_scale_factor,
-        )
-    elif down_block_type == "AttnDownBlock2D":
-        if add_downsample is False:
-            downsample_type = None
-        else:
-            downsample_type = downsample_type or "conv"  # default to 'conv'
-        return AttnDownBlock2D(
-            num_layers=num_layers,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            temb_channels=temb_channels,
-            dropout=dropout,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-            resnet_groups=resnet_groups,
-            downsample_padding=downsample_padding,
-            attention_head_dim=attention_head_dim,
-            resnet_time_scale_shift=resnet_time_scale_shift,
-            downsample_type=downsample_type,
-        )
-    elif down_block_type == "CrossAttnDownBlock2D":
-        if cross_attention_dim is None:
-            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
-        return CrossAttnDownBlock2D(
-            num_layers=num_layers,
-            transformer_layers_per_block=transformer_layers_per_block,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            temb_channels=temb_channels,
-            dropout=dropout,
-            add_downsample=add_downsample,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-            resnet_groups=resnet_groups,
-            downsample_padding=downsample_padding,
-            cross_attention_dim=cross_attention_dim,
-            num_attention_heads=num_attention_heads,
-            dual_cross_attention=dual_cross_attention,
-            use_linear_projection=use_linear_projection,
-            only_cross_attention=only_cross_attention,
-            upcast_attention=upcast_attention,
-            resnet_time_scale_shift=resnet_time_scale_shift,
-            attention_type=attention_type,
-        )
-    elif down_block_type == "SimpleCrossAttnDownBlock2D":
-        if cross_attention_dim is None:
-            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
-        return SimpleCrossAttnDownBlock2D(
-            num_layers=num_layers,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            temb_channels=temb_channels,
-            dropout=dropout,
-            add_downsample=add_downsample,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-            resnet_groups=resnet_groups,
-            cross_attention_dim=cross_attention_dim,
-            attention_head_dim=attention_head_dim,
-            resnet_time_scale_shift=resnet_time_scale_shift,
-            skip_time_act=resnet_skip_time_act,
-            output_scale_factor=resnet_out_scale_factor,
-            only_cross_attention=only_cross_attention,
-            cross_attention_norm=cross_attention_norm,
-        )
-    elif down_block_type == "SkipDownBlock2D":
-        return SkipDownBlock2D(
-            num_layers=num_layers,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            temb_channels=temb_channels,
-            dropout=dropout,
-            add_downsample=add_downsample,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-            downsample_padding=downsample_padding,
-            resnet_time_scale_shift=resnet_time_scale_shift,
-        )
-    elif down_block_type == "AttnSkipDownBlock2D":
-        return AttnSkipDownBlock2D(
-            num_layers=num_layers,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            temb_channels=temb_channels,
-            dropout=dropout,
-            add_downsample=add_downsample,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-            attention_head_dim=attention_head_dim,
-            resnet_time_scale_shift=resnet_time_scale_shift,
-        )
-    elif down_block_type == "DownEncoderBlock2D":
-        return DownEncoderBlock2D(
-            num_layers=num_layers,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            dropout=dropout,
-            add_downsample=add_downsample,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-            resnet_groups=resnet_groups,
-            downsample_padding=downsample_padding,
-            resnet_time_scale_shift=resnet_time_scale_shift,
-        )
-    elif down_block_type == "AttnDownEncoderBlock2D":
-        return AttnDownEncoderBlock2D(
-            num_layers=num_layers,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            dropout=dropout,
-            add_downsample=add_downsample,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-            resnet_groups=resnet_groups,
-            downsample_padding=downsample_padding,
-            attention_head_dim=attention_head_dim,
-            resnet_time_scale_shift=resnet_time_scale_shift,
-        )
-    elif down_block_type == "KDownBlock2D":
-        return KDownBlock2D(
-            num_layers=num_layers,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            temb_channels=temb_channels,
-            dropout=dropout,
-            add_downsample=add_downsample,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-        )
-    elif down_block_type == "KCrossAttnDownBlock2D":
-        return KCrossAttnDownBlock2D(
-            num_layers=num_layers,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            temb_channels=temb_channels,
-            dropout=dropout,
-            add_downsample=add_downsample,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-            cross_attention_dim=cross_attention_dim,
-            attention_head_dim=attention_head_dim,
-            add_self_attention=True if not add_downsample else False,
-        )
-    raise ValueError(f"{down_block_type} does not exist.")
-
-
-def get_up_block(
-    up_block_type: str,
-    num_layers: int,
-    in_channels: int,
-    out_channels: int,
-    prev_output_channel: int,
-    temb_channels: int,
-    add_upsample: bool,
-    resnet_eps: float,
-    resnet_act_fn: str,
-    resolution_idx: Optional[int] = None,
-    transformer_layers_per_block: int = 1,
-    num_attention_heads: Optional[int] = None,
-    resnet_groups: Optional[int] = None,
-    cross_attention_dim: Optional[int] = None,
-    dual_cross_attention: bool = False,
-    use_linear_projection: bool = False,
-    only_cross_attention: bool = False,
-    upcast_attention: bool = False,
-    resnet_time_scale_shift: str = "default",
-    attention_type: str = "default",
-    resnet_skip_time_act: bool = False,
-    resnet_out_scale_factor: float = 1.0,
-    cross_attention_norm: Optional[str] = None,
-    attention_head_dim: Optional[int] = None,
-    upsample_type: Optional[str] = None,
-    dropout: float = 0.0,
-) -> nn.Module:
-    # If attn head dim is not defined, we default it to the number of heads
-    if attention_head_dim is None:
-        logger.warn(
-            f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
-        )
-        attention_head_dim = num_attention_heads
-
-    up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
-    if up_block_type == "UpBlock2D":
-        return UpBlock2D(
-            num_layers=num_layers,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            prev_output_channel=prev_output_channel,
-            temb_channels=temb_channels,
-            resolution_idx=resolution_idx,
-            dropout=dropout,
-            add_upsample=add_upsample,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-            resnet_groups=resnet_groups,
-            resnet_time_scale_shift=resnet_time_scale_shift,
-        )
-    elif up_block_type == "ResnetUpsampleBlock2D":
-        return ResnetUpsampleBlock2D(
-            num_layers=num_layers,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            prev_output_channel=prev_output_channel,
-            temb_channels=temb_channels,
-            resolution_idx=resolution_idx,
-            dropout=dropout,
-            add_upsample=add_upsample,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-            resnet_groups=resnet_groups,
-            resnet_time_scale_shift=resnet_time_scale_shift,
-            skip_time_act=resnet_skip_time_act,
-            output_scale_factor=resnet_out_scale_factor,
-        )
-    elif up_block_type == "CrossAttnUpBlock2D":
-        if cross_attention_dim is None:
-            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
-        return CrossAttnUpBlock2D(
-            num_layers=num_layers,
-            transformer_layers_per_block=transformer_layers_per_block,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            prev_output_channel=prev_output_channel,
-            temb_channels=temb_channels,
-            resolution_idx=resolution_idx,
-            dropout=dropout,
-            add_upsample=add_upsample,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-            resnet_groups=resnet_groups,
-            cross_attention_dim=cross_attention_dim,
-            num_attention_heads=num_attention_heads,
-            dual_cross_attention=dual_cross_attention,
-            use_linear_projection=use_linear_projection,
-            only_cross_attention=only_cross_attention,
-            upcast_attention=upcast_attention,
-            resnet_time_scale_shift=resnet_time_scale_shift,
-            attention_type=attention_type,
-        )
-    elif up_block_type == "SimpleCrossAttnUpBlock2D":
-        if cross_attention_dim is None:
-            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
-        return SimpleCrossAttnUpBlock2D(
-            num_layers=num_layers,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            prev_output_channel=prev_output_channel,
-            temb_channels=temb_channels,
-            resolution_idx=resolution_idx,
-            dropout=dropout,
-            add_upsample=add_upsample,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-            resnet_groups=resnet_groups,
-            cross_attention_dim=cross_attention_dim,
-            attention_head_dim=attention_head_dim,
-            resnet_time_scale_shift=resnet_time_scale_shift,
-            skip_time_act=resnet_skip_time_act,
-            output_scale_factor=resnet_out_scale_factor,
-            only_cross_attention=only_cross_attention,
-            cross_attention_norm=cross_attention_norm,
-        )
-    elif up_block_type == "AttnUpBlock2D":
-        if add_upsample is False:
-            upsample_type = None
-        else:
-            upsample_type = upsample_type or "conv"  # default to 'conv'
-
-        return AttnUpBlock2D(
-            num_layers=num_layers,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            prev_output_channel=prev_output_channel,
-            temb_channels=temb_channels,
-            resolution_idx=resolution_idx,
-            dropout=dropout,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-            resnet_groups=resnet_groups,
-            attention_head_dim=attention_head_dim,
-            resnet_time_scale_shift=resnet_time_scale_shift,
-            upsample_type=upsample_type,
-        )
-    elif up_block_type == "SkipUpBlock2D":
-        return SkipUpBlock2D(
-            num_layers=num_layers,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            prev_output_channel=prev_output_channel,
-            temb_channels=temb_channels,
-            resolution_idx=resolution_idx,
-            dropout=dropout,
-            add_upsample=add_upsample,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-            resnet_time_scale_shift=resnet_time_scale_shift,
-        )
-    elif up_block_type == "AttnSkipUpBlock2D":
-        return AttnSkipUpBlock2D(
-            num_layers=num_layers,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            prev_output_channel=prev_output_channel,
-            temb_channels=temb_channels,
-            resolution_idx=resolution_idx,
-            dropout=dropout,
-            add_upsample=add_upsample,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-            attention_head_dim=attention_head_dim,
-            resnet_time_scale_shift=resnet_time_scale_shift,
-        )
-    elif up_block_type == "UpDecoderBlock2D":
-        return UpDecoderBlock2D(
-            num_layers=num_layers,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            resolution_idx=resolution_idx,
-            dropout=dropout,
-            add_upsample=add_upsample,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-            resnet_groups=resnet_groups,
-            resnet_time_scale_shift=resnet_time_scale_shift,
-            temb_channels=temb_channels,
-        )
-    elif up_block_type == "AttnUpDecoderBlock2D":
-        return AttnUpDecoderBlock2D(
-            num_layers=num_layers,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            resolution_idx=resolution_idx,
-            dropout=dropout,
-            add_upsample=add_upsample,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-            resnet_groups=resnet_groups,
-            attention_head_dim=attention_head_dim,
-            resnet_time_scale_shift=resnet_time_scale_shift,
-            temb_channels=temb_channels,
-        )
-    elif up_block_type == "KUpBlock2D":
-        return KUpBlock2D(
-            num_layers=num_layers,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            temb_channels=temb_channels,
-            resolution_idx=resolution_idx,
-            dropout=dropout,
-            add_upsample=add_upsample,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-        )
-    elif up_block_type == "KCrossAttnUpBlock2D":
-        return KCrossAttnUpBlock2D(
-            num_layers=num_layers,
-            in_channels=in_channels,
-            out_channels=out_channels,
-            temb_channels=temb_channels,
-            resolution_idx=resolution_idx,
-            dropout=dropout,
-            add_upsample=add_upsample,
-            resnet_eps=resnet_eps,
-            resnet_act_fn=resnet_act_fn,
-            cross_attention_dim=cross_attention_dim,
-            attention_head_dim=attention_head_dim,
-        )
-
-    raise ValueError(f"{up_block_type} does not exist.")
-
-
-class AutoencoderTinyBlock(nn.Module):
-    """
-    Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU
-    blocks.
-
-    Args:
-        in_channels (`int`): The number of input channels.
-        out_channels (`int`): The number of output channels.
-        act_fn (`str`):
-            ` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`.
-
-    Returns:
-        `torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to
-        `out_channels`.
-    """
-
-    def __init__(self, in_channels: int, out_channels: int, act_fn: str):
-        super().__init__()
-        act_fn = get_activation(act_fn)
-        self.conv = nn.Sequential(
-            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
-            act_fn,
-            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
-            act_fn,
-            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
-        )
-        self.skip = (
-            nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
-            if in_channels != out_channels
-            else nn.Identity()
-        )
-        self.fuse = nn.ReLU()
-
-    def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
-        return self.fuse(self.conv(x) + self.skip(x))
-
-
-class UNetMidBlock2D(nn.Module):
-    """
-    A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks.
-
-    Args:
-        in_channels (`int`): The number of input channels.
-        temb_channels (`int`): The number of temporal embedding channels.
-        dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
-        num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
-        resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
-        resnet_time_scale_shift (`str`, *optional*, defaults to `default`):
-            The type of normalization to apply to the time embeddings. This can help to improve the performance of the
-            model on tasks with long-range temporal dependencies.
-        resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks.
-        resnet_groups (`int`, *optional*, defaults to 32):
-            The number of groups to use in the group normalization layers of the resnet blocks.
-        attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks.
-        resnet_pre_norm (`bool`, *optional*, defaults to `True`):
-            Whether to use pre-normalization for the resnet blocks.
-        add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks.
-        attention_head_dim (`int`, *optional*, defaults to 1):
-            Dimension of a single attention head. The number of attention heads is determined based on this value and
-            the number of input channels.
-        output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor.
-
-    Returns:
-        `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
-        in_channels, height, width)`.
-
-    """
-
-    def __init__(
-        self,
-        in_channels: int,
-        temb_channels: int,
-        dropout: float = 0.0,
-        num_layers: int = 1,
-        resnet_eps: float = 1e-6,
-        resnet_time_scale_shift: str = "default",  # default, spatial
-        resnet_act_fn: str = "swish",
-        resnet_groups: int = 32,
-        attn_groups: Optional[int] = None,
-        resnet_pre_norm: bool = True,
-        add_attention: bool = True,
-        attention_head_dim: int = 1,
-        output_scale_factor: float = 1.0,
-    ):
-        super().__init__()
-        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
-        self.add_attention = add_attention
-
-        if attn_groups is None:
-            attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None
-
-        # there is always at least one resnet
-        resnets = [
-            ResnetBlock2D(
-                in_channels=in_channels,
-                out_channels=in_channels,
-                temb_channels=temb_channels,
-                eps=resnet_eps,
-                groups=resnet_groups,
-                dropout=dropout,
-                time_embedding_norm=resnet_time_scale_shift,
-                non_linearity=resnet_act_fn,
-                output_scale_factor=output_scale_factor,
-                pre_norm=resnet_pre_norm,
-            )
-        ]
-        attentions = []
-
-        if attention_head_dim is None:
-            logger.warn(
-                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
-            )
-            attention_head_dim = in_channels
-
-        for _ in range(num_layers):
-            if self.add_attention:
-                attentions.append(
-                    Attention(
-                        in_channels,
-                        heads=in_channels // attention_head_dim,
-                        dim_head=attention_head_dim,
-                        rescale_output_factor=output_scale_factor,
-                        eps=resnet_eps,
-                        norm_num_groups=attn_groups,
-                        spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
-                        residual_connection=True,
-                        bias=True,
-                        upcast_softmax=True,
-                        _from_deprecated_attn_block=True,
-                    )
-                )
-            else:
-                attentions.append(None)
-
-            resnets.append(
-                ResnetBlock2D(
-                    in_channels=in_channels,
-                    out_channels=in_channels,
-                    temb_channels=temb_channels,
-                    eps=resnet_eps,
-                    groups=resnet_groups,
-                    dropout=dropout,
-                    time_embedding_norm=resnet_time_scale_shift,
-                    non_linearity=resnet_act_fn,
-                    output_scale_factor=output_scale_factor,
-                    pre_norm=resnet_pre_norm,
-                )
-            )
-
-        self.attentions = nn.ModuleList(attentions)
-        self.resnets = nn.ModuleList(resnets)
-
-    def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
-        hidden_states = self.resnets[0](hidden_states, temb)
-        for attn, resnet in zip(self.attentions, self.resnets[1:]):
-            if attn is not None:
-                hidden_states = attn(hidden_states, temb=temb)
-            hidden_states = resnet(hidden_states, temb)
-
-        return hidden_states
-
-
-class UNetMidBlock2DCrossAttn(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        temb_channels: int,
-        dropout: float = 0.0,
-        num_layers: int = 1,
-        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
-        resnet_eps: float = 1e-6,
-        resnet_time_scale_shift: str = "default",
-        resnet_act_fn: str = "swish",
-        resnet_groups: int = 32,
-        resnet_pre_norm: bool = True,
-        num_attention_heads: int = 1,
-        output_scale_factor: float = 1.0,
-        cross_attention_dim: int = 1280,
-        dual_cross_attention: bool = False,
-        use_linear_projection: bool = False,
-        upcast_attention: bool = False,
-        attention_type: str = "default",
-    ):
-        super().__init__()
-
-        self.has_cross_attention = True
-        self.num_attention_heads = num_attention_heads
-        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
-
-        # support for variable transformer layers per block
-        if isinstance(transformer_layers_per_block, int):
-            transformer_layers_per_block = [transformer_layers_per_block] * num_layers
-
-        # there is always at least one resnet
-        resnets = [
-            ResnetBlock2D(
-                in_channels=in_channels,
-                out_channels=in_channels,
-                temb_channels=temb_channels,
-                eps=resnet_eps,
-                groups=resnet_groups,
-                dropout=dropout,
-                time_embedding_norm=resnet_time_scale_shift,
-                non_linearity=resnet_act_fn,
-                output_scale_factor=output_scale_factor,
-                pre_norm=resnet_pre_norm,
-            )
-        ]
-        attentions = []
-
-        for i in range(num_layers):
-            if not dual_cross_attention:
-                attentions.append(
-                    Transformer2DModel(
-                        num_attention_heads,
-                        in_channels // num_attention_heads,
-                        in_channels=in_channels,
-                        num_layers=transformer_layers_per_block[i],
-                        cross_attention_dim=cross_attention_dim,
-                        norm_num_groups=resnet_groups,
-                        use_linear_projection=use_linear_projection,
-                        upcast_attention=upcast_attention,
-                        attention_type=attention_type,
-                    )
-                )
-            else:
-                attentions.append(
-                    DualTransformer2DModel(
-                        num_attention_heads,
-                        in_channels // num_attention_heads,
-                        in_channels=in_channels,
-                        num_layers=1,
-                        cross_attention_dim=cross_attention_dim,
-                        norm_num_groups=resnet_groups,
-                    )
-                )
-            resnets.append(
-                ResnetBlock2D(
-                    in_channels=in_channels,
-                    out_channels=in_channels,
-                    temb_channels=temb_channels,
-                    eps=resnet_eps,
-                    groups=resnet_groups,
-                    dropout=dropout,
-                    time_embedding_norm=resnet_time_scale_shift,
-                    non_linearity=resnet_act_fn,
-                    output_scale_factor=output_scale_factor,
-                    pre_norm=resnet_pre_norm,
-                )
-            )
-
-        self.attentions = nn.ModuleList(attentions)
-        self.resnets = nn.ModuleList(resnets)
-
-        self.gradient_checkpointing = False
-
-    def forward(
-        self,
-        hidden_states: torch.FloatTensor,
-        temb: Optional[torch.FloatTensor] = None,
-        encoder_hidden_states: Optional[torch.FloatTensor] = None,
-        attention_mask: Optional[torch.FloatTensor] = None,
-        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
-        encoder_attention_mask: Optional[torch.FloatTensor] = None,
-    ) -> torch.FloatTensor:
-        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
-        hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
-        garment_features = []
-        for attn, resnet in zip(self.attentions, self.resnets[1:]):
-            if self.training and self.gradient_checkpointing:
-
-                def create_custom_forward(module, return_dict=None):
-                    def custom_forward(*inputs):
-                        if return_dict is not None:
-                            return module(*inputs, return_dict=return_dict)
-                        else:
-                            return module(*inputs)
-
-                    return custom_forward
-
-                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
-                # hidden_states = attn(
-                hidden_states,out_garment_feat = attn(
-                    hidden_states,
-                    encoder_hidden_states=encoder_hidden_states,
-                    cross_attention_kwargs=cross_attention_kwargs,
-                    attention_mask=attention_mask,
-                    encoder_attention_mask=encoder_attention_mask,
-                    return_dict=False,
-                )
-                hidden_states=hidden_states[0]
-                hidden_states = torch.utils.checkpoint.checkpoint(
-                    create_custom_forward(resnet),
-                    hidden_states,
-                    temb,
-                    **ckpt_kwargs,
-                )
-            else:
-                # hidden_states= attn(
-                hidden_states,out_garment_feat = attn(
-                    hidden_states,
-                    encoder_hidden_states=encoder_hidden_states,
-                    cross_attention_kwargs=cross_attention_kwargs,
-                    attention_mask=attention_mask,
-                    encoder_attention_mask=encoder_attention_mask,
-                    return_dict=False,
-                )
-                hidden_states=hidden_states[0]
-                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
-            garment_features += out_garment_feat
-        return hidden_states,garment_features
-        # return hidden_states 
-
-
-class UNetMidBlock2DSimpleCrossAttn(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        temb_channels: int,
-        dropout: float = 0.0,
-        num_layers: int = 1,
-        resnet_eps: float = 1e-6,
-        resnet_time_scale_shift: str = "default",
-        resnet_act_fn: str = "swish",
-        resnet_groups: int = 32,
-        resnet_pre_norm: bool = True,
-        attention_head_dim: int = 1,
-        output_scale_factor: float = 1.0,
-        cross_attention_dim: int = 1280,
-        skip_time_act: bool = False,
-        only_cross_attention: bool = False,
-        cross_attention_norm: Optional[str] = None,
-    ):
-        super().__init__()
-
-        self.has_cross_attention = True
-
-        self.attention_head_dim = attention_head_dim
-        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
-
-        self.num_heads = in_channels // self.attention_head_dim
-
-        # there is always at least one resnet
-        resnets = [
-            ResnetBlock2D(
-                in_channels=in_channels,
-                out_channels=in_channels,
-                temb_channels=temb_channels,
-                eps=resnet_eps,
-                groups=resnet_groups,
-                dropout=dropout,
-                time_embedding_norm=resnet_time_scale_shift,
-                non_linearity=resnet_act_fn,
-                output_scale_factor=output_scale_factor,
-                pre_norm=resnet_pre_norm,
-                skip_time_act=skip_time_act,
-            )
-        ]
-        attentions = []
-
-        for _ in range(num_layers):
-            processor = (
-                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
-            )
-
-            attentions.append(
-                Attention(
-                    query_dim=in_channels,
-                    cross_attention_dim=in_channels,
-                    heads=self.num_heads,
-                    dim_head=self.attention_head_dim,
-                    added_kv_proj_dim=cross_attention_dim,
-                    norm_num_groups=resnet_groups,
-                    bias=True,
-                    upcast_softmax=True,
-                    only_cross_attention=only_cross_attention,
-                    cross_attention_norm=cross_attention_norm,
-                    processor=processor,
-                )
-            )
-            resnets.append(
-                ResnetBlock2D(
-                    in_channels=in_channels,
-                    out_channels=in_channels,
-                    temb_channels=temb_channels,
-                    eps=resnet_eps,
-                    groups=resnet_groups,
-                    dropout=dropout,
-                    time_embedding_norm=resnet_time_scale_shift,
-                    non_linearity=resnet_act_fn,
-                    output_scale_factor=output_scale_factor,
-                    pre_norm=resnet_pre_norm,
-                    skip_time_act=skip_time_act,
-                )
-            )
-
-        self.attentions = nn.ModuleList(attentions)
-        self.resnets = nn.ModuleList(resnets)
-
-    def forward(
-        self,
-        hidden_states: torch.FloatTensor,
-        temb: Optional[torch.FloatTensor] = None,
-        encoder_hidden_states: Optional[torch.FloatTensor] = None,
-        attention_mask: Optional[torch.FloatTensor] = None,
-        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
-        encoder_attention_mask: Optional[torch.FloatTensor] = None,
-    ) -> torch.FloatTensor:
-        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
-        lora_scale = cross_attention_kwargs.get("scale", 1.0)
-
-        if attention_mask is None:
-            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
-            mask = None if encoder_hidden_states is None else encoder_attention_mask
-        else:
-            # when attention_mask is defined: we don't even check for encoder_attention_mask.
-            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
-            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
-            #       then we can simplify this whole if/else block to:
-            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
-            mask = attention_mask
-
-        hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
-        for attn, resnet in zip(self.attentions, self.resnets[1:]):
-            # attn
-            hidden_states = attn(
-                hidden_states,
-                encoder_hidden_states=encoder_hidden_states,
-                attention_mask=mask,
-                **cross_attention_kwargs,
-            )
-
-            # resnet
-            hidden_states = resnet(hidden_states, temb, scale=lora_scale)
-
-        return hidden_states
-
-
-class AttnDownBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        out_channels: int,
-        temb_channels: int,
-        dropout: float = 0.0,
-        num_layers: int = 1,
-        resnet_eps: float = 1e-6,
-        resnet_time_scale_shift: str = "default",
-        resnet_act_fn: str = "swish",
-        resnet_groups: int = 32,
-        resnet_pre_norm: bool = True,
-        attention_head_dim: int = 1,
-        output_scale_factor: float = 1.0,
-        downsample_padding: int = 1,
-        downsample_type: str = "conv",
-    ):
-        super().__init__()
-        resnets = []
-        attentions = []
-        self.downsample_type = downsample_type
-
-        if attention_head_dim is None:
-            logger.warn(
-                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
-            )
-            attention_head_dim = out_channels
-
-        for i in range(num_layers):
-            in_channels = in_channels if i == 0 else out_channels
-            resnets.append(
-                ResnetBlock2D(
-                    in_channels=in_channels,
-                    out_channels=out_channels,
-                    temb_channels=temb_channels,
-                    eps=resnet_eps,
-                    groups=resnet_groups,
-                    dropout=dropout,
-                    time_embedding_norm=resnet_time_scale_shift,
-                    non_linearity=resnet_act_fn,
-                    output_scale_factor=output_scale_factor,
-                    pre_norm=resnet_pre_norm,
-                )
-            )
-            attentions.append(
-                Attention(
-                    out_channels,
-                    heads=out_channels // attention_head_dim,
-                    dim_head=attention_head_dim,
-                    rescale_output_factor=output_scale_factor,
-                    eps=resnet_eps,
-                    norm_num_groups=resnet_groups,
-                    residual_connection=True,
-                    bias=True,
-                    upcast_softmax=True,
-                    _from_deprecated_attn_block=True,
-                )
-            )
-
-        self.attentions = nn.ModuleList(attentions)
-        self.resnets = nn.ModuleList(resnets)
-
-        if downsample_type == "conv":
-            self.downsamplers = nn.ModuleList(
-                [
-                    Downsample2D(
-                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
-                    )
-                ]
-            )
-        elif downsample_type == "resnet":
-            self.downsamplers = nn.ModuleList(
-                [
-                    ResnetBlock2D(
-                        in_channels=out_channels,
-                        out_channels=out_channels,
-                        temb_channels=temb_channels,
-                        eps=resnet_eps,
-                        groups=resnet_groups,
-                        dropout=dropout,
-                        time_embedding_norm=resnet_time_scale_shift,
-                        non_linearity=resnet_act_fn,
-                        output_scale_factor=output_scale_factor,
-                        pre_norm=resnet_pre_norm,
-                        down=True,
-                    )
-                ]
-            )
-        else:
-            self.downsamplers = None
-
-    def forward(
-        self,
-        hidden_states: torch.FloatTensor,
-        temb: Optional[torch.FloatTensor] = None,
-        upsample_size: Optional[int] = None,
-        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
-    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
-        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
-
-        lora_scale = cross_attention_kwargs.get("scale", 1.0)
-
-        output_states = ()
-
-        for resnet, attn in zip(self.resnets, self.attentions):
-            cross_attention_kwargs.update({"scale": lora_scale})
-            hidden_states = resnet(hidden_states, temb, scale=lora_scale)
-            hidden_states = attn(hidden_states, **cross_attention_kwargs)
-            output_states = output_states + (hidden_states,)
-
-        if self.downsamplers is not None:
-            for downsampler in self.downsamplers:
-                if self.downsample_type == "resnet":
-                    hidden_states = downsampler(hidden_states, temb=temb, scale=lora_scale)
-                else:
-                    hidden_states = downsampler(hidden_states, scale=lora_scale)
-
-            output_states += (hidden_states,)
-
-        return hidden_states, output_states
-
-
-class CrossAttnDownBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        out_channels: int,
-        temb_channels: int,
-        dropout: float = 0.0,
-        num_layers: int = 1,
-        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
-        resnet_eps: float = 1e-6,
-        resnet_time_scale_shift: str = "default",
-        resnet_act_fn: str = "swish",
-        resnet_groups: int = 32,
-        resnet_pre_norm: bool = True,
-        num_attention_heads: int = 1,
-        cross_attention_dim: int = 1280,
-        output_scale_factor: float = 1.0,
-        downsample_padding: int = 1,
-        add_downsample: bool = True,
-        dual_cross_attention: bool = False,
-        use_linear_projection: bool = False,
-        only_cross_attention: bool = False,
-        upcast_attention: bool = False,
-        attention_type: str = "default",
-    ):
-        super().__init__()
-        resnets = []
-        attentions = []
-
-        self.has_cross_attention = True
-        self.num_attention_heads = num_attention_heads
-        if isinstance(transformer_layers_per_block, int):
-            transformer_layers_per_block = [transformer_layers_per_block] * num_layers
-
-        for i in range(num_layers):
-            in_channels = in_channels if i == 0 else out_channels
-            resnets.append(
-                ResnetBlock2D(
-                    in_channels=in_channels,
-                    out_channels=out_channels,
-                    temb_channels=temb_channels,
-                    eps=resnet_eps,
-                    groups=resnet_groups,
-                    dropout=dropout,
-                    time_embedding_norm=resnet_time_scale_shift,
-                    non_linearity=resnet_act_fn,
-                    output_scale_factor=output_scale_factor,
-                    pre_norm=resnet_pre_norm,
-                )
-            )
-            if not dual_cross_attention:
-                attentions.append(
-                    Transformer2DModel(
-                        num_attention_heads,
-                        out_channels // num_attention_heads,
-                        in_channels=out_channels,
-                        num_layers=transformer_layers_per_block[i],
-                        cross_attention_dim=cross_attention_dim,
-                        norm_num_groups=resnet_groups,
-                        use_linear_projection=use_linear_projection,
-                        only_cross_attention=only_cross_attention,
-                        upcast_attention=upcast_attention,
-                        attention_type=attention_type,
-                    )
-                )
-            else:
-                attentions.append(
-                    DualTransformer2DModel(
-                        num_attention_heads,
-                        out_channels // num_attention_heads,
-                        in_channels=out_channels,
-                        num_layers=1,
-                        cross_attention_dim=cross_attention_dim,
-                        norm_num_groups=resnet_groups,
-                    )
-                )
-        self.attentions = nn.ModuleList(attentions)
-        self.resnets = nn.ModuleList(resnets)
-
-        if add_downsample:
-            self.downsamplers = nn.ModuleList(
-                [
-                    Downsample2D(
-                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
-                    )
-                ]
-            )
-        else:
-            self.downsamplers = None
-
-        self.gradient_checkpointing = False
-
-    def forward(
-        self,
-        hidden_states: torch.FloatTensor,
-        temb: Optional[torch.FloatTensor] = None,
-        encoder_hidden_states: Optional[torch.FloatTensor] = None,
-        attention_mask: Optional[torch.FloatTensor] = None,
-        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
-        encoder_attention_mask: Optional[torch.FloatTensor] = None,
-        additional_residuals: Optional[torch.FloatTensor] = None,
-    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
-        output_states = ()
-
-        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
-
-        blocks = list(zip(self.resnets, self.attentions))
-        garment_features = []
-        for i, (resnet, attn) in enumerate(blocks):
-            if self.training and self.gradient_checkpointing:
-
-                def create_custom_forward(module, return_dict=None):
-                    def custom_forward(*inputs):
-                        if return_dict is not None:
-                            return module(*inputs, return_dict=return_dict)
-                        else:
-                            return module(*inputs)
-
-                    return custom_forward
-
-                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
-                hidden_states = torch.utils.checkpoint.checkpoint(
-                    create_custom_forward(resnet),
-                    hidden_states,
-                    temb,
-                    **ckpt_kwargs,
-                )
-                hidden_states,out_garment_feat = attn(
-                    hidden_states,
-                    encoder_hidden_states=encoder_hidden_states,
-                    cross_attention_kwargs=cross_attention_kwargs,
-                    attention_mask=attention_mask,
-                    encoder_attention_mask=encoder_attention_mask,
-                    return_dict=False,
-                )
-                hidden_states=hidden_states[0]
-            else:
-                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
-                hidden_states,out_garment_feat = attn(
-                    hidden_states,
-                    encoder_hidden_states=encoder_hidden_states,
-                    cross_attention_kwargs=cross_attention_kwargs,
-                    attention_mask=attention_mask,
-                    encoder_attention_mask=encoder_attention_mask,
-                    return_dict=False,
-                )
-                hidden_states=hidden_states[0]
-            garment_features += out_garment_feat
-            # apply additional residuals to the output of the last pair of resnet and attention blocks
-            if i == len(blocks) - 1 and additional_residuals is not None:
-                hidden_states = hidden_states + additional_residuals
-
-            output_states = output_states + (hidden_states,)
-
-        if self.downsamplers is not None:
-            for downsampler in self.downsamplers:
-                hidden_states = downsampler(hidden_states, scale=lora_scale)
-
-            output_states = output_states + (hidden_states,)
-
-        return hidden_states, output_states,garment_features
-
-
-class DownBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        out_channels: int,
-        temb_channels: int,
-        dropout: float = 0.0,
-        num_layers: int = 1,
-        resnet_eps: float = 1e-6,
-        resnet_time_scale_shift: str = "default",
-        resnet_act_fn: str = "swish",
-        resnet_groups: int = 32,
-        resnet_pre_norm: bool = True,
-        output_scale_factor: float = 1.0,
-        add_downsample: bool = True,
-        downsample_padding: int = 1,
-    ):
-        super().__init__()
-        resnets = []
-
-        for i in range(num_layers):
-            in_channels = in_channels if i == 0 else out_channels
-            resnets.append(
-                ResnetBlock2D(
-                    in_channels=in_channels,
-                    out_channels=out_channels,
-                    temb_channels=temb_channels,
-                    eps=resnet_eps,
-                    groups=resnet_groups,
-                    dropout=dropout,
-                    time_embedding_norm=resnet_time_scale_shift,
-                    non_linearity=resnet_act_fn,
-                    output_scale_factor=output_scale_factor,
-                    pre_norm=resnet_pre_norm,
-                )
-            )
-
-        self.resnets = nn.ModuleList(resnets)
-
-        if add_downsample:
-            self.downsamplers = nn.ModuleList(
-                [
-                    Downsample2D(
-                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
-                    )
-                ]
-            )
-        else:
-            self.downsamplers = None
-
-        self.gradient_checkpointing = False
-
-    def forward(
-        self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
-    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
-        output_states = ()
-
-        for resnet in self.resnets:
-            if self.training and self.gradient_checkpointing:
-
-                def create_custom_forward(module):
-                    def custom_forward(*inputs):
-                        return module(*inputs)
-
-                    return custom_forward
-
-                if is_torch_version(">=", "1.11.0"):
-                    hidden_states = torch.utils.checkpoint.checkpoint(
-                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
-                    )
-                else:
-                    hidden_states = torch.utils.checkpoint.checkpoint(
-                        create_custom_forward(resnet), hidden_states, temb
-                    )
-            else:
-                hidden_states = resnet(hidden_states, temb, scale=scale)
-
-            output_states = output_states + (hidden_states,)
-
-        if self.downsamplers is not None:
-            for downsampler in self.downsamplers:
-                hidden_states = downsampler(hidden_states, scale=scale)
-
-            output_states = output_states + (hidden_states,)
-
-        return hidden_states, output_states
-
-
-class DownEncoderBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        out_channels: int,
-        dropout: float = 0.0,
-        num_layers: int = 1,
-        resnet_eps: float = 1e-6,
-        resnet_time_scale_shift: str = "default",
-        resnet_act_fn: str = "swish",
-        resnet_groups: int = 32,
-        resnet_pre_norm: bool = True,
-        output_scale_factor: float = 1.0,
-        add_downsample: bool = True,
-        downsample_padding: int = 1,
-    ):
-        super().__init__()
-        resnets = []
-
-        for i in range(num_layers):
-            in_channels = in_channels if i == 0 else out_channels
-            resnets.append(
-                ResnetBlock2D(
-                    in_channels=in_channels,
-                    out_channels=out_channels,
-                    temb_channels=None,
-                    eps=resnet_eps,
-                    groups=resnet_groups,
-                    dropout=dropout,
-                    time_embedding_norm=resnet_time_scale_shift,
-                    non_linearity=resnet_act_fn,
-                    output_scale_factor=output_scale_factor,
-                    pre_norm=resnet_pre_norm,
-                )
-            )
-
-        self.resnets = nn.ModuleList(resnets)
-
-        if add_downsample:
-            self.downsamplers = nn.ModuleList(
-                [
-                    Downsample2D(
-                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
-                    )
-                ]
-            )
-        else:
-            self.downsamplers = None
-
-    def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
-        for resnet in self.resnets:
-            hidden_states = resnet(hidden_states, temb=None, scale=scale)
-
-        if self.downsamplers is not None:
-            for downsampler in self.downsamplers:
-                hidden_states = downsampler(hidden_states, scale)
-
-        return hidden_states
-
-
-class AttnDownEncoderBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        out_channels: int,
-        dropout: float = 0.0,
-        num_layers: int = 1,
-        resnet_eps: float = 1e-6,
-        resnet_time_scale_shift: str = "default",
-        resnet_act_fn: str = "swish",
-        resnet_groups: int = 32,
-        resnet_pre_norm: bool = True,
-        attention_head_dim: int = 1,
-        output_scale_factor: float = 1.0,
-        add_downsample: bool = True,
-        downsample_padding: int = 1,
-    ):
-        super().__init__()
-        resnets = []
-        attentions = []
-
-        if attention_head_dim is None:
-            logger.warn(
-                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
-            )
-            attention_head_dim = out_channels
-
-        for i in range(num_layers):
-            in_channels = in_channels if i == 0 else out_channels
-            resnets.append(
-                ResnetBlock2D(
-                    in_channels=in_channels,
-                    out_channels=out_channels,
-                    temb_channels=None,
-                    eps=resnet_eps,
-                    groups=resnet_groups,
-                    dropout=dropout,
-                    time_embedding_norm=resnet_time_scale_shift,
-                    non_linearity=resnet_act_fn,
-                    output_scale_factor=output_scale_factor,
-                    pre_norm=resnet_pre_norm,
-                )
-            )
-            attentions.append(
-                Attention(
-                    out_channels,
-                    heads=out_channels // attention_head_dim,
-                    dim_head=attention_head_dim,
-                    rescale_output_factor=output_scale_factor,
-                    eps=resnet_eps,
-                    norm_num_groups=resnet_groups,
-                    residual_connection=True,
-                    bias=True,
-                    upcast_softmax=True,
-                    _from_deprecated_attn_block=True,
-                )
-            )
-
-        self.attentions = nn.ModuleList(attentions)
-        self.resnets = nn.ModuleList(resnets)
-
-        if add_downsample:
-            self.downsamplers = nn.ModuleList(
-                [
-                    Downsample2D(
-                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
-                    )
-                ]
-            )
-        else:
-            self.downsamplers = None
-
-    def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
-        for resnet, attn in zip(self.resnets, self.attentions):
-            hidden_states = resnet(hidden_states, temb=None, scale=scale)
-            cross_attention_kwargs = {"scale": scale}
-            hidden_states = attn(hidden_states, **cross_attention_kwargs)
-
-        if self.downsamplers is not None:
-            for downsampler in self.downsamplers:
-                hidden_states = downsampler(hidden_states, scale)
-
-        return hidden_states
-
-
-class AttnSkipDownBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        out_channels: int,
-        temb_channels: int,
-        dropout: float = 0.0,
-        num_layers: int = 1,
-        resnet_eps: float = 1e-6,
-        resnet_time_scale_shift: str = "default",
-        resnet_act_fn: str = "swish",
-        resnet_pre_norm: bool = True,
-        attention_head_dim: int = 1,
-        output_scale_factor: float = np.sqrt(2.0),
-        add_downsample: bool = True,
-    ):
-        super().__init__()
-        self.attentions = nn.ModuleList([])
-        self.resnets = nn.ModuleList([])
-
-        if attention_head_dim is None:
-            logger.warn(
-                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
-            )
-            attention_head_dim = out_channels
-
-        for i in range(num_layers):
-            in_channels = in_channels if i == 0 else out_channels
-            self.resnets.append(
-                ResnetBlock2D(
-                    in_channels=in_channels,
-                    out_channels=out_channels,
-                    temb_channels=temb_channels,
-                    eps=resnet_eps,
-                    groups=min(in_channels // 4, 32),
-                    groups_out=min(out_channels // 4, 32),
-                    dropout=dropout,
-                    time_embedding_norm=resnet_time_scale_shift,
-                    non_linearity=resnet_act_fn,
-                    output_scale_factor=output_scale_factor,
-                    pre_norm=resnet_pre_norm,
-                )
-            )
-            self.attentions.append(
-                Attention(
-                    out_channels,
-                    heads=out_channels // attention_head_dim,
-                    dim_head=attention_head_dim,
-                    rescale_output_factor=output_scale_factor,
-                    eps=resnet_eps,
-                    norm_num_groups=32,
-                    residual_connection=True,
-                    bias=True,
-                    upcast_softmax=True,
-                    _from_deprecated_attn_block=True,
-                )
-            )
-
-        if add_downsample:
-            self.resnet_down = ResnetBlock2D(
-                in_channels=out_channels,
-                out_channels=out_channels,
-                temb_channels=temb_channels,
-                eps=resnet_eps,
-                groups=min(out_channels // 4, 32),
-                dropout=dropout,
-                time_embedding_norm=resnet_time_scale_shift,
-                non_linearity=resnet_act_fn,
-                output_scale_factor=output_scale_factor,
-                pre_norm=resnet_pre_norm,
-                use_in_shortcut=True,
-                down=True,
-                kernel="fir",
-            )
-            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
-            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
-        else:
-            self.resnet_down = None
-            self.downsamplers = None
-            self.skip_conv = None
-
-    def forward(
-        self,
-        hidden_states: torch.FloatTensor,
-        temb: Optional[torch.FloatTensor] = None,
-        skip_sample: Optional[torch.FloatTensor] = None,
-        scale: float = 1.0,
-    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]:
-        output_states = ()
-
-        for resnet, attn in zip(self.resnets, self.attentions):
-            hidden_states = resnet(hidden_states, temb, scale=scale)
-            cross_attention_kwargs = {"scale": scale}
-            hidden_states = attn(hidden_states, **cross_attention_kwargs)
-            output_states += (hidden_states,)
-
-        if self.downsamplers is not None:
-            hidden_states = self.resnet_down(hidden_states, temb, scale=scale)
-            for downsampler in self.downsamplers:
-                skip_sample = downsampler(skip_sample)
-
-            hidden_states = self.skip_conv(skip_sample) + hidden_states
-
-            output_states += (hidden_states,)
-
-        return hidden_states, output_states, skip_sample
-
-
-class SkipDownBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        out_channels: int,
-        temb_channels: int,
-        dropout: float = 0.0,
-        num_layers: int = 1,
-        resnet_eps: float = 1e-6,
-        resnet_time_scale_shift: str = "default",
-        resnet_act_fn: str = "swish",
-        resnet_pre_norm: bool = True,
-        output_scale_factor: float = np.sqrt(2.0),
-        add_downsample: bool = True,
-        downsample_padding: int = 1,
-    ):
-        super().__init__()
-        self.resnets = nn.ModuleList([])
-
-        for i in range(num_layers):
-            in_channels = in_channels if i == 0 else out_channels
-            self.resnets.append(
-                ResnetBlock2D(
-                    in_channels=in_channels,
-                    out_channels=out_channels,
-                    temb_channels=temb_channels,
-                    eps=resnet_eps,
-                    groups=min(in_channels // 4, 32),
-                    groups_out=min(out_channels // 4, 32),
-                    dropout=dropout,
-                    time_embedding_norm=resnet_time_scale_shift,
-                    non_linearity=resnet_act_fn,
-                    output_scale_factor=output_scale_factor,
-                    pre_norm=resnet_pre_norm,
-                )
-            )
-
-        if add_downsample:
-            self.resnet_down = ResnetBlock2D(
-                in_channels=out_channels,
-                out_channels=out_channels,
-                temb_channels=temb_channels,
-                eps=resnet_eps,
-                groups=min(out_channels // 4, 32),
-                dropout=dropout,
-                time_embedding_norm=resnet_time_scale_shift,
-                non_linearity=resnet_act_fn,
-                output_scale_factor=output_scale_factor,
-                pre_norm=resnet_pre_norm,
-                use_in_shortcut=True,
-                down=True,
-                kernel="fir",
-            )
-            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
-            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
-        else:
-            self.resnet_down = None
-            self.downsamplers = None
-            self.skip_conv = None
-
-    def forward(
-        self,
-        hidden_states: torch.FloatTensor,
-        temb: Optional[torch.FloatTensor] = None,
-        skip_sample: Optional[torch.FloatTensor] = None,
-        scale: float = 1.0,
-    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]:
-        output_states = ()
-
-        for resnet in self.resnets:
-            hidden_states = resnet(hidden_states, temb, scale)
-            output_states += (hidden_states,)
-
-        if self.downsamplers is not None:
-            hidden_states = self.resnet_down(hidden_states, temb, scale)
-            for downsampler in self.downsamplers:
-                skip_sample = downsampler(skip_sample)
-
-            hidden_states = self.skip_conv(skip_sample) + hidden_states
-
-            output_states += (hidden_states,)
-
-        return hidden_states, output_states, skip_sample
-
-
-class ResnetDownsampleBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        out_channels: int,
-        temb_channels: int,
-        dropout: float = 0.0,
-        num_layers: int = 1,
-        resnet_eps: float = 1e-6,
-        resnet_time_scale_shift: str = "default",
-        resnet_act_fn: str = "swish",
-        resnet_groups: int = 32,
-        resnet_pre_norm: bool = True,
-        output_scale_factor: float = 1.0,
-        add_downsample: bool = True,
-        skip_time_act: bool = False,
-    ):
-        super().__init__()
-        resnets = []
-
-        for i in range(num_layers):
-            in_channels = in_channels if i == 0 else out_channels
-            resnets.append(
-                ResnetBlock2D(
-                    in_channels=in_channels,
-                    out_channels=out_channels,
-                    temb_channels=temb_channels,
-                    eps=resnet_eps,
-                    groups=resnet_groups,
-                    dropout=dropout,
-                    time_embedding_norm=resnet_time_scale_shift,
-                    non_linearity=resnet_act_fn,
-                    output_scale_factor=output_scale_factor,
-                    pre_norm=resnet_pre_norm,
-                    skip_time_act=skip_time_act,
-                )
-            )
-
-        self.resnets = nn.ModuleList(resnets)
-
-        if add_downsample:
-            self.downsamplers = nn.ModuleList(
-                [
-                    ResnetBlock2D(
-                        in_channels=out_channels,
-                        out_channels=out_channels,
-                        temb_channels=temb_channels,
-                        eps=resnet_eps,
-                        groups=resnet_groups,
-                        dropout=dropout,
-                        time_embedding_norm=resnet_time_scale_shift,
-                        non_linearity=resnet_act_fn,
-                        output_scale_factor=output_scale_factor,
-                        pre_norm=resnet_pre_norm,
-                        skip_time_act=skip_time_act,
-                        down=True,
-                    )
-                ]
-            )
-        else:
-            self.downsamplers = None
-
-        self.gradient_checkpointing = False
-
-    def forward(
-        self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
-    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
-        output_states = ()
-
-        for resnet in self.resnets:
-            if self.training and self.gradient_checkpointing:
-
-                def create_custom_forward(module):
-                    def custom_forward(*inputs):
-                        return module(*inputs)
-
-                    return custom_forward
-
-                if is_torch_version(">=", "1.11.0"):
-                    hidden_states = torch.utils.checkpoint.checkpoint(
-                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
-                    )
-                else:
-                    hidden_states = torch.utils.checkpoint.checkpoint(
-                        create_custom_forward(resnet), hidden_states, temb
-                    )
-            else:
-                hidden_states = resnet(hidden_states, temb, scale)
-
-            output_states = output_states + (hidden_states,)
-
-        if self.downsamplers is not None:
-            for downsampler in self.downsamplers:
-                hidden_states = downsampler(hidden_states, temb, scale)
-
-            output_states = output_states + (hidden_states,)
-
-        return hidden_states, output_states
-
-
-class SimpleCrossAttnDownBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        out_channels: int,
-        temb_channels: int,
-        dropout: float = 0.0,
-        num_layers: int = 1,
-        resnet_eps: float = 1e-6,
-        resnet_time_scale_shift: str = "default",
-        resnet_act_fn: str = "swish",
-        resnet_groups: int = 32,
-        resnet_pre_norm: bool = True,
-        attention_head_dim: int = 1,
-        cross_attention_dim: int = 1280,
-        output_scale_factor: float = 1.0,
-        add_downsample: bool = True,
-        skip_time_act: bool = False,
-        only_cross_attention: bool = False,
-        cross_attention_norm: Optional[str] = None,
-    ):
-        super().__init__()
-
-        self.has_cross_attention = True
-
-        resnets = []
-        attentions = []
-
-        self.attention_head_dim = attention_head_dim
-        self.num_heads = out_channels // self.attention_head_dim
-
-        for i in range(num_layers):
-            in_channels = in_channels if i == 0 else out_channels
-            resnets.append(
-                ResnetBlock2D(
-                    in_channels=in_channels,
-                    out_channels=out_channels,
-                    temb_channels=temb_channels,
-                    eps=resnet_eps,
-                    groups=resnet_groups,
-                    dropout=dropout,
-                    time_embedding_norm=resnet_time_scale_shift,
-                    non_linearity=resnet_act_fn,
-                    output_scale_factor=output_scale_factor,
-                    pre_norm=resnet_pre_norm,
-                    skip_time_act=skip_time_act,
-                )
-            )
-
-            processor = (
-                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
-            )
-
-            attentions.append(
-                Attention(
-                    query_dim=out_channels,
-                    cross_attention_dim=out_channels,
-                    heads=self.num_heads,
-                    dim_head=attention_head_dim,
-                    added_kv_proj_dim=cross_attention_dim,
-                    norm_num_groups=resnet_groups,
-                    bias=True,
-                    upcast_softmax=True,
-                    only_cross_attention=only_cross_attention,
-                    cross_attention_norm=cross_attention_norm,
-                    processor=processor,
-                )
-            )
-        self.attentions = nn.ModuleList(attentions)
-        self.resnets = nn.ModuleList(resnets)
-
-        if add_downsample:
-            self.downsamplers = nn.ModuleList(
-                [
-                    ResnetBlock2D(
-                        in_channels=out_channels,
-                        out_channels=out_channels,
-                        temb_channels=temb_channels,
-                        eps=resnet_eps,
-                        groups=resnet_groups,
-                        dropout=dropout,
-                        time_embedding_norm=resnet_time_scale_shift,
-                        non_linearity=resnet_act_fn,
-                        output_scale_factor=output_scale_factor,
-                        pre_norm=resnet_pre_norm,
-                        skip_time_act=skip_time_act,
-                        down=True,
-                    )
-                ]
-            )
-        else:
-            self.downsamplers = None
-
-        self.gradient_checkpointing = False
-
-    def forward(
-        self,
-        hidden_states: torch.FloatTensor,
-        temb: Optional[torch.FloatTensor] = None,
-        encoder_hidden_states: Optional[torch.FloatTensor] = None,
-        attention_mask: Optional[torch.FloatTensor] = None,
-        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
-        encoder_attention_mask: Optional[torch.FloatTensor] = None,
-    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
-        output_states = ()
-        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
-
-        lora_scale = cross_attention_kwargs.get("scale", 1.0)
-
-        if attention_mask is None:
-            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
-            mask = None if encoder_hidden_states is None else encoder_attention_mask
-        else:
-            # when attention_mask is defined: we don't even check for encoder_attention_mask.
-            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
-            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
-            #       then we can simplify this whole if/else block to:
-            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
-            mask = attention_mask
-
-        for resnet, attn in zip(self.resnets, self.attentions):
-            if self.training and self.gradient_checkpointing:
-
-                def create_custom_forward(module, return_dict=None):
-                    def custom_forward(*inputs):
-                        if return_dict is not None:
-                            return module(*inputs, return_dict=return_dict)
-                        else:
-                            return module(*inputs)
-
-                    return custom_forward
-
-                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
-                hidden_states = attn(
-                    hidden_states,
-                    encoder_hidden_states=encoder_hidden_states,
-                    attention_mask=mask,
-                    **cross_attention_kwargs,
-                )
-            else:
-                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
-
-                hidden_states = attn(
-                    hidden_states,
-                    encoder_hidden_states=encoder_hidden_states,
-                    attention_mask=mask,
-                    **cross_attention_kwargs,
-                )
-
-            output_states = output_states + (hidden_states,)
-
-        if self.downsamplers is not None:
-            for downsampler in self.downsamplers:
-                hidden_states = downsampler(hidden_states, temb, scale=lora_scale)
-
-            output_states = output_states + (hidden_states,)
-
-        return hidden_states, output_states
-
-
-class KDownBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        out_channels: int,
-        temb_channels: int,
-        dropout: float = 0.0,
-        num_layers: int = 4,
-        resnet_eps: float = 1e-5,
-        resnet_act_fn: str = "gelu",
-        resnet_group_size: int = 32,
-        add_downsample: bool = False,
-    ):
-        super().__init__()
-        resnets = []
-
-        for i in range(num_layers):
-            in_channels = in_channels if i == 0 else out_channels
-            groups = in_channels // resnet_group_size
-            groups_out = out_channels // resnet_group_size
-
-            resnets.append(
-                ResnetBlock2D(
-                    in_channels=in_channels,
-                    out_channels=out_channels,
-                    dropout=dropout,
-                    temb_channels=temb_channels,
-                    groups=groups,
-                    groups_out=groups_out,
-                    eps=resnet_eps,
-                    non_linearity=resnet_act_fn,
-                    time_embedding_norm="ada_group",
-                    conv_shortcut_bias=False,
-                )
-            )
-
-        self.resnets = nn.ModuleList(resnets)
-
-        if add_downsample:
-            # YiYi's comments- might be able to use FirDownsample2D, look into details later
-            self.downsamplers = nn.ModuleList([KDownsample2D()])
-        else:
-            self.downsamplers = None
-
-        self.gradient_checkpointing = False
-
-    def forward(
-        self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
-    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
-        output_states = ()
-
-        for resnet in self.resnets:
-            if self.training and self.gradient_checkpointing:
-
-                def create_custom_forward(module):
-                    def custom_forward(*inputs):
-                        return module(*inputs)
-
-                    return custom_forward
-
-                if is_torch_version(">=", "1.11.0"):
-                    hidden_states = torch.utils.checkpoint.checkpoint(
-                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
-                    )
-                else:
-                    hidden_states = torch.utils.checkpoint.checkpoint(
-                        create_custom_forward(resnet), hidden_states, temb
-                    )
-            else:
-                hidden_states = resnet(hidden_states, temb, scale)
-
-            output_states += (hidden_states,)
-
-        if self.downsamplers is not None:
-            for downsampler in self.downsamplers:
-                hidden_states = downsampler(hidden_states)
-
-        return hidden_states, output_states
-
-
-class KCrossAttnDownBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        out_channels: int,
-        temb_channels: int,
-        cross_attention_dim: int,
-        dropout: float = 0.0,
-        num_layers: int = 4,
-        resnet_group_size: int = 32,
-        add_downsample: bool = True,
-        attention_head_dim: int = 64,
-        add_self_attention: bool = False,
-        resnet_eps: float = 1e-5,
-        resnet_act_fn: str = "gelu",
-    ):
-        super().__init__()
-        resnets = []
-        attentions = []
-
-        self.has_cross_attention = True
-
-        for i in range(num_layers):
-            in_channels = in_channels if i == 0 else out_channels
-            groups = in_channels // resnet_group_size
-            groups_out = out_channels // resnet_group_size
-
-            resnets.append(
-                ResnetBlock2D(
-                    in_channels=in_channels,
-                    out_channels=out_channels,
-                    dropout=dropout,
-                    temb_channels=temb_channels,
-                    groups=groups,
-                    groups_out=groups_out,
-                    eps=resnet_eps,
-                    non_linearity=resnet_act_fn,
-                    time_embedding_norm="ada_group",
-                    conv_shortcut_bias=False,
-                )
-            )
-            attentions.append(
-                KAttentionBlock(
-                    out_channels,
-                    out_channels // attention_head_dim,
-                    attention_head_dim,
-                    cross_attention_dim=cross_attention_dim,
-                    temb_channels=temb_channels,
-                    attention_bias=True,
-                    add_self_attention=add_self_attention,
-                    cross_attention_norm="layer_norm",
-                    group_size=resnet_group_size,
-                )
-            )
-
-        self.resnets = nn.ModuleList(resnets)
-        self.attentions = nn.ModuleList(attentions)
-
-        if add_downsample:
-            self.downsamplers = nn.ModuleList([KDownsample2D()])
-        else:
-            self.downsamplers = None
-
-        self.gradient_checkpointing = False
-
-    def forward(
-        self,
-        hidden_states: torch.FloatTensor,
-        temb: Optional[torch.FloatTensor] = None,
-        encoder_hidden_states: Optional[torch.FloatTensor] = None,
-        attention_mask: Optional[torch.FloatTensor] = None,
-        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
-        encoder_attention_mask: Optional[torch.FloatTensor] = None,
-    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
-        output_states = ()
-        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
-
-        for resnet, attn in zip(self.resnets, self.attentions):
-            if self.training and self.gradient_checkpointing:
-
-                def create_custom_forward(module, return_dict=None):
-                    def custom_forward(*inputs):
-                        if return_dict is not None:
-                            return module(*inputs, return_dict=return_dict)
-                        else:
-                            return module(*inputs)
-
-                    return custom_forward
-
-                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
-                hidden_states = torch.utils.checkpoint.checkpoint(
-                    create_custom_forward(resnet),
-                    hidden_states,
-                    temb,
-                    **ckpt_kwargs,
-                )
-                hidden_states = attn(
-                    hidden_states,
-                    encoder_hidden_states=encoder_hidden_states,
-                    emb=temb,
-                    attention_mask=attention_mask,
-                    cross_attention_kwargs=cross_attention_kwargs,
-                    encoder_attention_mask=encoder_attention_mask,
-                )
-            else:
-                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
-                hidden_states = attn(
-                    hidden_states,
-                    encoder_hidden_states=encoder_hidden_states,
-                    emb=temb,
-                    attention_mask=attention_mask,
-                    cross_attention_kwargs=cross_attention_kwargs,
-                    encoder_attention_mask=encoder_attention_mask,
-                )
-
-            if self.downsamplers is None:
-                output_states += (None,)
-            else:
-                output_states += (hidden_states,)
-
-        if self.downsamplers is not None:
-            for downsampler in self.downsamplers:
-                hidden_states = downsampler(hidden_states)
-
-        return hidden_states, output_states
-
-
-class AttnUpBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        prev_output_channel: int,
-        out_channels: int,
-        temb_channels: int,
-        resolution_idx: int = None,
-        dropout: float = 0.0,
-        num_layers: int = 1,
-        resnet_eps: float = 1e-6,
-        resnet_time_scale_shift: str = "default",
-        resnet_act_fn: str = "swish",
-        resnet_groups: int = 32,
-        resnet_pre_norm: bool = True,
-        attention_head_dim: int = 1,
-        output_scale_factor: float = 1.0,
-        upsample_type: str = "conv",
-    ):
-        super().__init__()
-        resnets = []
-        attentions = []
-
-        self.upsample_type = upsample_type
-
-        if attention_head_dim is None:
-            logger.warn(
-                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
-            )
-            attention_head_dim = out_channels
-
-        for i in range(num_layers):
-            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
-            resnet_in_channels = prev_output_channel if i == 0 else out_channels
-
-            resnets.append(
-                ResnetBlock2D(
-                    in_channels=resnet_in_channels + res_skip_channels,
-                    out_channels=out_channels,
-                    temb_channels=temb_channels,
-                    eps=resnet_eps,
-                    groups=resnet_groups,
-                    dropout=dropout,
-                    time_embedding_norm=resnet_time_scale_shift,
-                    non_linearity=resnet_act_fn,
-                    output_scale_factor=output_scale_factor,
-                    pre_norm=resnet_pre_norm,
-                )
-            )
-            attentions.append(
-                Attention(
-                    out_channels,
-                    heads=out_channels // attention_head_dim,
-                    dim_head=attention_head_dim,
-                    rescale_output_factor=output_scale_factor,
-                    eps=resnet_eps,
-                    norm_num_groups=resnet_groups,
-                    residual_connection=True,
-                    bias=True,
-                    upcast_softmax=True,
-                    _from_deprecated_attn_block=True,
-                )
-            )
-
-        self.attentions = nn.ModuleList(attentions)
-        self.resnets = nn.ModuleList(resnets)
-
-        if upsample_type == "conv":
-            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
-        elif upsample_type == "resnet":
-            self.upsamplers = nn.ModuleList(
-                [
-                    ResnetBlock2D(
-                        in_channels=out_channels,
-                        out_channels=out_channels,
-                        temb_channels=temb_channels,
-                        eps=resnet_eps,
-                        groups=resnet_groups,
-                        dropout=dropout,
-                        time_embedding_norm=resnet_time_scale_shift,
-                        non_linearity=resnet_act_fn,
-                        output_scale_factor=output_scale_factor,
-                        pre_norm=resnet_pre_norm,
-                        up=True,
-                    )
-                ]
-            )
-        else:
-            self.upsamplers = None
-
-        self.resolution_idx = resolution_idx
-
-    def forward(
-        self,
-        hidden_states: torch.FloatTensor,
-        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
-        temb: Optional[torch.FloatTensor] = None,
-        upsample_size: Optional[int] = None,
-        scale: float = 1.0,
-    ) -> torch.FloatTensor:
-        for resnet, attn in zip(self.resnets, self.attentions):
-            # pop res hidden states
-            res_hidden_states = res_hidden_states_tuple[-1]
-            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
-            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
-
-            hidden_states = resnet(hidden_states, temb, scale=scale)
-            cross_attention_kwargs = {"scale": scale}
-            hidden_states = attn(hidden_states, **cross_attention_kwargs)
-
-        if self.upsamplers is not None:
-            for upsampler in self.upsamplers:
-                if self.upsample_type == "resnet":
-                    hidden_states = upsampler(hidden_states, temb=temb, scale=scale)
-                else:
-                    hidden_states = upsampler(hidden_states, scale=scale)
-
-        return hidden_states
-
-
-class CrossAttnUpBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        out_channels: int,
-        prev_output_channel: int,
-        temb_channels: int,
-        resolution_idx: Optional[int] = None,
-        dropout: float = 0.0,
-        num_layers: int = 1,
-        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
-        resnet_eps: float = 1e-6,
-        resnet_time_scale_shift: str = "default",
-        resnet_act_fn: str = "swish",
-        resnet_groups: int = 32,
-        resnet_pre_norm: bool = True,
-        num_attention_heads: int = 1,
-        cross_attention_dim: int = 1280,
-        output_scale_factor: float = 1.0,
-        add_upsample: bool = True,
-        dual_cross_attention: bool = False,
-        use_linear_projection: bool = False,
-        only_cross_attention: bool = False,
-        upcast_attention: bool = False,
-        attention_type: str = "default",
-    ):
-        super().__init__()
-        resnets = []
-        attentions = []
-
-        self.has_cross_attention = True
-        self.num_attention_heads = num_attention_heads
-
-        if isinstance(transformer_layers_per_block, int):
-            transformer_layers_per_block = [transformer_layers_per_block] * num_layers
-
-        for i in range(num_layers):
-            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
-            resnet_in_channels = prev_output_channel if i == 0 else out_channels
-
-            resnets.append(
-                ResnetBlock2D(
-                    in_channels=resnet_in_channels + res_skip_channels,
-                    out_channels=out_channels,
-                    temb_channels=temb_channels,
-                    eps=resnet_eps,
-                    groups=resnet_groups,
-                    dropout=dropout,
-                    time_embedding_norm=resnet_time_scale_shift,
-                    non_linearity=resnet_act_fn,
-                    output_scale_factor=output_scale_factor,
-                    pre_norm=resnet_pre_norm,
-                )
-            )
-            if not dual_cross_attention:
-                attentions.append(
-                    Transformer2DModel(
-                        num_attention_heads,
-                        out_channels // num_attention_heads,
-                        in_channels=out_channels,
-                        num_layers=transformer_layers_per_block[i],
-                        cross_attention_dim=cross_attention_dim,
-                        norm_num_groups=resnet_groups,
-                        use_linear_projection=use_linear_projection,
-                        only_cross_attention=only_cross_attention,
-                        upcast_attention=upcast_attention,
-                        attention_type=attention_type,
-                    )
-                )
-            else:
-                attentions.append(
-                    DualTransformer2DModel(
-                        num_attention_heads,
-                        out_channels // num_attention_heads,
-                        in_channels=out_channels,
-                        num_layers=1,
-                        cross_attention_dim=cross_attention_dim,
-                        norm_num_groups=resnet_groups,
-                    )
-                )
-        self.attentions = nn.ModuleList(attentions)
-        self.resnets = nn.ModuleList(resnets)
-
-        if add_upsample:
-            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
-        else:
-            self.upsamplers = None
-
-        self.gradient_checkpointing = False
-        self.resolution_idx = resolution_idx
-
-    def forward(
-        self,
-        hidden_states: torch.FloatTensor,
-        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
-        temb: Optional[torch.FloatTensor] = None,
-        encoder_hidden_states: Optional[torch.FloatTensor] = None,
-        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
-        upsample_size: Optional[int] = None,
-        attention_mask: Optional[torch.FloatTensor] = None,
-        encoder_attention_mask: Optional[torch.FloatTensor] = None,
-    ) -> torch.FloatTensor:
-        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
-        is_freeu_enabled = (
-            getattr(self, "s1", None)
-            and getattr(self, "s2", None)
-            and getattr(self, "b1", None)
-            and getattr(self, "b2", None)
-        )
-        garment_features = []
-        for resnet, attn in zip(self.resnets, self.attentions):
-            # pop res hidden states
-            # print("h.shape")
-            # print(h.shape)
-            # print("hidden_states.shape)
-            # print(hidden_states.shape)
-            # print("attn_block")
-            # print(attn)
-
-            res_hidden_states = res_hidden_states_tuple[-1]
-            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
-
-            # FreeU: Only operate on the first two stages
-            if is_freeu_enabled:
-                hidden_states, res_hidden_states = apply_freeu(
-                    self.resolution_idx,
-                    hidden_states,
-                    res_hidden_states,
-                    s1=self.s1,
-                    s2=self.s2,
-                    b1=self.b1,
-                    b2=self.b2,
-                )
-
-            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
-            # print(hidden_states.shape)
-            # print(encoder_hidden_states.shape)
-            if self.training and self.gradient_checkpointing:
-
-                def create_custom_forward(module, return_dict=None):
-                    def custom_forward(*inputs):
-                        if return_dict is not None:
-                            return module(*inputs, return_dict=return_dict)
-                        else:
-                            return module(*inputs)
-
-                    return custom_forward
-
-                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
-                hidden_states = torch.utils.checkpoint.checkpoint(
-                    create_custom_forward(resnet),
-                    hidden_states,
-                    temb,
-                    **ckpt_kwargs,
-                )
-                hidden_states,out_garment_feat = attn(
-                    hidden_states,
-                    encoder_hidden_states=encoder_hidden_states,
-                    cross_attention_kwargs=cross_attention_kwargs,
-                    attention_mask=attention_mask,
-                    encoder_attention_mask=encoder_attention_mask,
-                    return_dict=False,
-                )
-                hidden_states=hidden_states[0]
-            else:
-                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
-                hidden_states,out_garment_feat = attn(
-                    hidden_states,
-                    encoder_hidden_states=encoder_hidden_states,
-                    cross_attention_kwargs=cross_attention_kwargs,
-                    attention_mask=attention_mask,
-                    encoder_attention_mask=encoder_attention_mask,
-                    return_dict=False,
-                )
-                hidden_states=hidden_states[0]
-            garment_features += out_garment_feat
-        if self.upsamplers is not None:
-            for upsampler in self.upsamplers:
-                hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale)
-
-        return hidden_states,garment_features
-
-
-class UpBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        prev_output_channel: int,
-        out_channels: int,
-        temb_channels: int,
-        resolution_idx: Optional[int] = None,
-        dropout: float = 0.0,
-        num_layers: int = 1,
-        resnet_eps: float = 1e-6,
-        resnet_time_scale_shift: str = "default",
-        resnet_act_fn: str = "swish",
-        resnet_groups: int = 32,
-        resnet_pre_norm: bool = True,
-        output_scale_factor: float = 1.0,
-        add_upsample: bool = True,
-    ):
-        super().__init__()
-        resnets = []
-
-        for i in range(num_layers):
-            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
-            resnet_in_channels = prev_output_channel if i == 0 else out_channels
-
-            resnets.append(
-                ResnetBlock2D(
-                    in_channels=resnet_in_channels + res_skip_channels,
-                    out_channels=out_channels,
-                    temb_channels=temb_channels,
-                    eps=resnet_eps,
-                    groups=resnet_groups,
-                    dropout=dropout,
-                    time_embedding_norm=resnet_time_scale_shift,
-                    non_linearity=resnet_act_fn,
-                    output_scale_factor=output_scale_factor,
-                    pre_norm=resnet_pre_norm,
-                )
-            )
-
-        self.resnets = nn.ModuleList(resnets)
-
-        if add_upsample:
-            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
-        else:
-            self.upsamplers = None
-
-        self.gradient_checkpointing = False
-        self.resolution_idx = resolution_idx
-
-    def forward(
-        self,
-        hidden_states: torch.FloatTensor,
-        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
-        temb: Optional[torch.FloatTensor] = None,
-        upsample_size: Optional[int] = None,
-        scale: float = 1.0,
-    ) -> torch.FloatTensor:
-        is_freeu_enabled = (
-            getattr(self, "s1", None)
-            and getattr(self, "s2", None)
-            and getattr(self, "b1", None)
-            and getattr(self, "b2", None)
-        )
-
-        for resnet in self.resnets:
-            # pop res hidden states
-            res_hidden_states = res_hidden_states_tuple[-1]
-            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
-
-            # FreeU: Only operate on the first two stages
-            if is_freeu_enabled:
-                hidden_states, res_hidden_states = apply_freeu(
-                    self.resolution_idx,
-                    hidden_states,
-                    res_hidden_states,
-                    s1=self.s1,
-                    s2=self.s2,
-                    b1=self.b1,
-                    b2=self.b2,
-                )
-
-            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
-
-            if self.training and self.gradient_checkpointing:
-
-                def create_custom_forward(module):
-                    def custom_forward(*inputs):
-                        return module(*inputs)
-
-                    return custom_forward
-
-                if is_torch_version(">=", "1.11.0"):
-                    hidden_states = torch.utils.checkpoint.checkpoint(
-                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
-                    )
-                else:
-                    hidden_states = torch.utils.checkpoint.checkpoint(
-                        create_custom_forward(resnet), hidden_states, temb
-                    )
-            else:
-                hidden_states = resnet(hidden_states, temb, scale=scale)
-
-        if self.upsamplers is not None:
-            for upsampler in self.upsamplers:
-                hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
-
-        return hidden_states
-    # def forward(
-    #     self,
-    #     hidden_states: torch.FloatTensor,
-    #     res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
-    #     temb: Optional[torch.FloatTensor] = None,
-    #     upsample_size: Optional[int] = None,
-    #     scale: float = 1.0,
-    #     zero_block=None,
-    #     hint=None,
-    # ) -> torch.FloatTensor:
-    #     is_freeu_enabled = (
-    #         getattr(self, "s1", None)
-    #         and getattr(self, "s2", None)
-    #         and getattr(self, "b1", None)
-    #         and getattr(self, "b2", None)
-    #     )
-
-    #     # print(len(self.resnets))
-    #     # print(len(zero_block))
-    #     # print(len(hint))
-    #     # for resnet in self.resnets:
-    #     for resnet, zero,h in zip(self.resnets,zero_block,hint):
-
-    #         # pop res hidden states
-    #         res_hidden_states = res_hidden_states_tuple[-1]
-    #         res_hidden_states_tuple = res_hidden_states_tuple[:-1]
-
-    #         res_hidden_states = res_hidden_states + zero(h)
-    #         # FreeU: Only operate on the first two stages
-    #         if is_freeu_enabled:
-    #             hidden_states, res_hidden_states = apply_freeu(
-    #                 self.resolution_idx,
-    #                 hidden_states,
-    #                 res_hidden_states,
-    #                 s1=self.s1,
-    #                 s2=self.s2,
-    #                 b1=self.b1,
-    #                 b2=self.b2,
-    #             )
-
-    #         # print(hidden_states.shape)
-    #         # # print(h.shape)
-    #         # print(res_hidden_states.shape)
-    #         hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
-    #         # print(hidden_states.shape)
-
-    #         if self.training and self.gradient_checkpointing:
-
-    #             def create_custom_forward(module):
-    #                 def custom_forward(*inputs):
-    #                     return module(*inputs)
-
-    #                 return custom_forward
-
-    #             if is_torch_version(">=", "1.11.0"):
-    #                 hidden_states = torch.utils.checkpoint.checkpoint(
-    #                     create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
-    #                 )
-    #             else:
-    #                 hidden_states = torch.utils.checkpoint.checkpoint(
-    #                     create_custom_forward(resnet), hidden_states, temb
-    #                 )
-    #         else:
-    #             hidden_states = resnet(hidden_states, temb, scale=scale)
-
-    #     if self.upsamplers is not None:
-    #         for upsampler in self.upsamplers:
-    #             hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
-
-    #     return hidden_states
-
-
-class UpDecoderBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        out_channels: int,
-        resolution_idx: Optional[int] = None,
-        dropout: float = 0.0,
-        num_layers: int = 1,
-        resnet_eps: float = 1e-6,
-        resnet_time_scale_shift: str = "default",  # default, spatial
-        resnet_act_fn: str = "swish",
-        resnet_groups: int = 32,
-        resnet_pre_norm: bool = True,
-        output_scale_factor: float = 1.0,
-        add_upsample: bool = True,
-        temb_channels: Optional[int] = None,
-    ):
-        super().__init__()
-        resnets = []
-
-        for i in range(num_layers):
-            input_channels = in_channels if i == 0 else out_channels
-
-            resnets.append(
-                ResnetBlock2D(
-                    in_channels=input_channels,
-                    out_channels=out_channels,
-                    temb_channels=temb_channels,
-                    eps=resnet_eps,
-                    groups=resnet_groups,
-                    dropout=dropout,
-                    time_embedding_norm=resnet_time_scale_shift,
-                    non_linearity=resnet_act_fn,
-                    output_scale_factor=output_scale_factor,
-                    pre_norm=resnet_pre_norm,
-                )
-            )
-
-        self.resnets = nn.ModuleList(resnets)
-
-        if add_upsample:
-            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
-        else:
-            self.upsamplers = None
-
-        self.resolution_idx = resolution_idx
-
-    def forward(
-        self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
-    ) -> torch.FloatTensor:
-        for resnet in self.resnets:
-            hidden_states = resnet(hidden_states, temb=temb, scale=scale)
-
-        if self.upsamplers is not None:
-            for upsampler in self.upsamplers:
-                hidden_states = upsampler(hidden_states)
-
-        return hidden_states
-
-
-class AttnUpDecoderBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        out_channels: int,
-        resolution_idx: Optional[int] = None,
-        dropout: float = 0.0,
-        num_layers: int = 1,
-        resnet_eps: float = 1e-6,
-        resnet_time_scale_shift: str = "default",
-        resnet_act_fn: str = "swish",
-        resnet_groups: int = 32,
-        resnet_pre_norm: bool = True,
-        attention_head_dim: int = 1,
-        output_scale_factor: float = 1.0,
-        add_upsample: bool = True,
-        temb_channels: Optional[int] = None,
-    ):
-        super().__init__()
-        resnets = []
-        attentions = []
-
-        if attention_head_dim is None:
-            logger.warn(
-                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
-            )
-            attention_head_dim = out_channels
-
-        for i in range(num_layers):
-            input_channels = in_channels if i == 0 else out_channels
-
-            resnets.append(
-                ResnetBlock2D(
-                    in_channels=input_channels,
-                    out_channels=out_channels,
-                    temb_channels=temb_channels,
-                    eps=resnet_eps,
-                    groups=resnet_groups,
-                    dropout=dropout,
-                    time_embedding_norm=resnet_time_scale_shift,
-                    non_linearity=resnet_act_fn,
-                    output_scale_factor=output_scale_factor,
-                    pre_norm=resnet_pre_norm,
-                )
-            )
-            attentions.append(
-                Attention(
-                    out_channels,
-                    heads=out_channels // attention_head_dim,
-                    dim_head=attention_head_dim,
-                    rescale_output_factor=output_scale_factor,
-                    eps=resnet_eps,
-                    norm_num_groups=resnet_groups if resnet_time_scale_shift != "spatial" else None,
-                    spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
-                    residual_connection=True,
-                    bias=True,
-                    upcast_softmax=True,
-                    _from_deprecated_attn_block=True,
-                )
-            )
-
-        self.attentions = nn.ModuleList(attentions)
-        self.resnets = nn.ModuleList(resnets)
-
-        if add_upsample:
-            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
-        else:
-            self.upsamplers = None
-
-        self.resolution_idx = resolution_idx
-
-    def forward(
-        self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
-    ) -> torch.FloatTensor:
-        for resnet, attn in zip(self.resnets, self.attentions):
-            hidden_states = resnet(hidden_states, temb=temb, scale=scale)
-            cross_attention_kwargs = {"scale": scale}
-            hidden_states = attn(hidden_states, temb=temb, **cross_attention_kwargs)
-
-        if self.upsamplers is not None:
-            for upsampler in self.upsamplers:
-                hidden_states = upsampler(hidden_states, scale=scale)
-
-        return hidden_states
-
-
-class AttnSkipUpBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        prev_output_channel: int,
-        out_channels: int,
-        temb_channels: int,
-        resolution_idx: Optional[int] = None,
-        dropout: float = 0.0,
-        num_layers: int = 1,
-        resnet_eps: float = 1e-6,
-        resnet_time_scale_shift: str = "default",
-        resnet_act_fn: str = "swish",
-        resnet_pre_norm: bool = True,
-        attention_head_dim: int = 1,
-        output_scale_factor: float = np.sqrt(2.0),
-        add_upsample: bool = True,
-    ):
-        super().__init__()
-        self.attentions = nn.ModuleList([])
-        self.resnets = nn.ModuleList([])
-
-        for i in range(num_layers):
-            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
-            resnet_in_channels = prev_output_channel if i == 0 else out_channels
-
-            self.resnets.append(
-                ResnetBlock2D(
-                    in_channels=resnet_in_channels + res_skip_channels,
-                    out_channels=out_channels,
-                    temb_channels=temb_channels,
-                    eps=resnet_eps,
-                    groups=min(resnet_in_channels + res_skip_channels // 4, 32),
-                    groups_out=min(out_channels // 4, 32),
-                    dropout=dropout,
-                    time_embedding_norm=resnet_time_scale_shift,
-                    non_linearity=resnet_act_fn,
-                    output_scale_factor=output_scale_factor,
-                    pre_norm=resnet_pre_norm,
-                )
-            )
-
-        if attention_head_dim is None:
-            logger.warn(
-                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
-            )
-            attention_head_dim = out_channels
-
-        self.attentions.append(
-            Attention(
-                out_channels,
-                heads=out_channels // attention_head_dim,
-                dim_head=attention_head_dim,
-                rescale_output_factor=output_scale_factor,
-                eps=resnet_eps,
-                norm_num_groups=32,
-                residual_connection=True,
-                bias=True,
-                upcast_softmax=True,
-                _from_deprecated_attn_block=True,
-            )
-        )
-
-        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
-        if add_upsample:
-            self.resnet_up = ResnetBlock2D(
-                in_channels=out_channels,
-                out_channels=out_channels,
-                temb_channels=temb_channels,
-                eps=resnet_eps,
-                groups=min(out_channels // 4, 32),
-                groups_out=min(out_channels // 4, 32),
-                dropout=dropout,
-                time_embedding_norm=resnet_time_scale_shift,
-                non_linearity=resnet_act_fn,
-                output_scale_factor=output_scale_factor,
-                pre_norm=resnet_pre_norm,
-                use_in_shortcut=True,
-                up=True,
-                kernel="fir",
-            )
-            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
-            self.skip_norm = torch.nn.GroupNorm(
-                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
-            )
-            self.act = nn.SiLU()
-        else:
-            self.resnet_up = None
-            self.skip_conv = None
-            self.skip_norm = None
-            self.act = None
-
-        self.resolution_idx = resolution_idx
-
-    def forward(
-        self,
-        hidden_states: torch.FloatTensor,
-        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
-        temb: Optional[torch.FloatTensor] = None,
-        skip_sample=None,
-        scale: float = 1.0,
-    ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
-        for resnet in self.resnets:
-            # pop res hidden states
-            res_hidden_states = res_hidden_states_tuple[-1]
-            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
-            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
-
-            hidden_states = resnet(hidden_states, temb, scale=scale)
-
-        cross_attention_kwargs = {"scale": scale}
-        hidden_states = self.attentions[0](hidden_states, **cross_attention_kwargs)
-
-        if skip_sample is not None:
-            skip_sample = self.upsampler(skip_sample)
-        else:
-            skip_sample = 0
-
-        if self.resnet_up is not None:
-            skip_sample_states = self.skip_norm(hidden_states)
-            skip_sample_states = self.act(skip_sample_states)
-            skip_sample_states = self.skip_conv(skip_sample_states)
-
-            skip_sample = skip_sample + skip_sample_states
-
-            hidden_states = self.resnet_up(hidden_states, temb, scale=scale)
-
-        return hidden_states, skip_sample
-
-
-class SkipUpBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        prev_output_channel: int,
-        out_channels: int,
-        temb_channels: int,
-        resolution_idx: Optional[int] = None,
-        dropout: float = 0.0,
-        num_layers: int = 1,
-        resnet_eps: float = 1e-6,
-        resnet_time_scale_shift: str = "default",
-        resnet_act_fn: str = "swish",
-        resnet_pre_norm: bool = True,
-        output_scale_factor: float = np.sqrt(2.0),
-        add_upsample: bool = True,
-        upsample_padding: int = 1,
-    ):
-        super().__init__()
-        self.resnets = nn.ModuleList([])
-
-        for i in range(num_layers):
-            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
-            resnet_in_channels = prev_output_channel if i == 0 else out_channels
-
-            self.resnets.append(
-                ResnetBlock2D(
-                    in_channels=resnet_in_channels + res_skip_channels,
-                    out_channels=out_channels,
-                    temb_channels=temb_channels,
-                    eps=resnet_eps,
-                    groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
-                    groups_out=min(out_channels // 4, 32),
-                    dropout=dropout,
-                    time_embedding_norm=resnet_time_scale_shift,
-                    non_linearity=resnet_act_fn,
-                    output_scale_factor=output_scale_factor,
-                    pre_norm=resnet_pre_norm,
-                )
-            )
-
-        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
-        if add_upsample:
-            self.resnet_up = ResnetBlock2D(
-                in_channels=out_channels,
-                out_channels=out_channels,
-                temb_channels=temb_channels,
-                eps=resnet_eps,
-                groups=min(out_channels // 4, 32),
-                groups_out=min(out_channels // 4, 32),
-                dropout=dropout,
-                time_embedding_norm=resnet_time_scale_shift,
-                non_linearity=resnet_act_fn,
-                output_scale_factor=output_scale_factor,
-                pre_norm=resnet_pre_norm,
-                use_in_shortcut=True,
-                up=True,
-                kernel="fir",
-            )
-            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
-            self.skip_norm = torch.nn.GroupNorm(
-                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
-            )
-            self.act = nn.SiLU()
-        else:
-            self.resnet_up = None
-            self.skip_conv = None
-            self.skip_norm = None
-            self.act = None
-
-        self.resolution_idx = resolution_idx
-
-    def forward(
-        self,
-        hidden_states: torch.FloatTensor,
-        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
-        temb: Optional[torch.FloatTensor] = None,
-        skip_sample=None,
-        scale: float = 1.0,
-    ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
-        for resnet in self.resnets:
-            # pop res hidden states
-            res_hidden_states = res_hidden_states_tuple[-1]
-            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
-            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
-
-            hidden_states = resnet(hidden_states, temb, scale=scale)
-
-        if skip_sample is not None:
-            skip_sample = self.upsampler(skip_sample)
-        else:
-            skip_sample = 0
-
-        if self.resnet_up is not None:
-            skip_sample_states = self.skip_norm(hidden_states)
-            skip_sample_states = self.act(skip_sample_states)
-            skip_sample_states = self.skip_conv(skip_sample_states)
-
-            skip_sample = skip_sample + skip_sample_states
-
-            hidden_states = self.resnet_up(hidden_states, temb, scale=scale)
-
-        return hidden_states, skip_sample
-
-
-class ResnetUpsampleBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        prev_output_channel: int,
-        out_channels: int,
-        temb_channels: int,
-        resolution_idx: Optional[int] = None,
-        dropout: float = 0.0,
-        num_layers: int = 1,
-        resnet_eps: float = 1e-6,
-        resnet_time_scale_shift: str = "default",
-        resnet_act_fn: str = "swish",
-        resnet_groups: int = 32,
-        resnet_pre_norm: bool = True,
-        output_scale_factor: float = 1.0,
-        add_upsample: bool = True,
-        skip_time_act: bool = False,
-    ):
-        super().__init__()
-        resnets = []
-
-        for i in range(num_layers):
-            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
-            resnet_in_channels = prev_output_channel if i == 0 else out_channels
-
-            resnets.append(
-                ResnetBlock2D(
-                    in_channels=resnet_in_channels + res_skip_channels,
-                    out_channels=out_channels,
-                    temb_channels=temb_channels,
-                    eps=resnet_eps,
-                    groups=resnet_groups,
-                    dropout=dropout,
-                    time_embedding_norm=resnet_time_scale_shift,
-                    non_linearity=resnet_act_fn,
-                    output_scale_factor=output_scale_factor,
-                    pre_norm=resnet_pre_norm,
-                    skip_time_act=skip_time_act,
-                )
-            )
-
-        self.resnets = nn.ModuleList(resnets)
-
-        if add_upsample:
-            self.upsamplers = nn.ModuleList(
-                [
-                    ResnetBlock2D(
-                        in_channels=out_channels,
-                        out_channels=out_channels,
-                        temb_channels=temb_channels,
-                        eps=resnet_eps,
-                        groups=resnet_groups,
-                        dropout=dropout,
-                        time_embedding_norm=resnet_time_scale_shift,
-                        non_linearity=resnet_act_fn,
-                        output_scale_factor=output_scale_factor,
-                        pre_norm=resnet_pre_norm,
-                        skip_time_act=skip_time_act,
-                        up=True,
-                    )
-                ]
-            )
-        else:
-            self.upsamplers = None
-
-        self.gradient_checkpointing = False
-        self.resolution_idx = resolution_idx
-
-    def forward(
-        self,
-        hidden_states: torch.FloatTensor,
-        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
-        temb: Optional[torch.FloatTensor] = None,
-        upsample_size: Optional[int] = None,
-        scale: float = 1.0,
-    ) -> torch.FloatTensor:
-        for resnet in self.resnets:
-            # pop res hidden states
-            res_hidden_states = res_hidden_states_tuple[-1]
-            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
-            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
-
-            if self.training and self.gradient_checkpointing:
-
-                def create_custom_forward(module):
-                    def custom_forward(*inputs):
-                        return module(*inputs)
-
-                    return custom_forward
-
-                if is_torch_version(">=", "1.11.0"):
-                    hidden_states = torch.utils.checkpoint.checkpoint(
-                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
-                    )
-                else:
-                    hidden_states = torch.utils.checkpoint.checkpoint(
-                        create_custom_forward(resnet), hidden_states, temb
-                    )
-            else:
-                hidden_states = resnet(hidden_states, temb, scale=scale)
-
-        if self.upsamplers is not None:
-            for upsampler in self.upsamplers:
-                hidden_states = upsampler(hidden_states, temb, scale=scale)
-
-        return hidden_states
-
-
-class SimpleCrossAttnUpBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        out_channels: int,
-        prev_output_channel: int,
-        temb_channels: int,
-        resolution_idx: Optional[int] = None,
-        dropout: float = 0.0,
-        num_layers: int = 1,
-        resnet_eps: float = 1e-6,
-        resnet_time_scale_shift: str = "default",
-        resnet_act_fn: str = "swish",
-        resnet_groups: int = 32,
-        resnet_pre_norm: bool = True,
-        attention_head_dim: int = 1,
-        cross_attention_dim: int = 1280,
-        output_scale_factor: float = 1.0,
-        add_upsample: bool = True,
-        skip_time_act: bool = False,
-        only_cross_attention: bool = False,
-        cross_attention_norm: Optional[str] = None,
-    ):
-        super().__init__()
-        resnets = []
-        attentions = []
-
-        self.has_cross_attention = True
-        self.attention_head_dim = attention_head_dim
-
-        self.num_heads = out_channels // self.attention_head_dim
-
-        for i in range(num_layers):
-            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
-            resnet_in_channels = prev_output_channel if i == 0 else out_channels
-
-            resnets.append(
-                ResnetBlock2D(
-                    in_channels=resnet_in_channels + res_skip_channels,
-                    out_channels=out_channels,
-                    temb_channels=temb_channels,
-                    eps=resnet_eps,
-                    groups=resnet_groups,
-                    dropout=dropout,
-                    time_embedding_norm=resnet_time_scale_shift,
-                    non_linearity=resnet_act_fn,
-                    output_scale_factor=output_scale_factor,
-                    pre_norm=resnet_pre_norm,
-                    skip_time_act=skip_time_act,
-                )
-            )
-
-            processor = (
-                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
-            )
-
-            attentions.append(
-                Attention(
-                    query_dim=out_channels,
-                    cross_attention_dim=out_channels,
-                    heads=self.num_heads,
-                    dim_head=self.attention_head_dim,
-                    added_kv_proj_dim=cross_attention_dim,
-                    norm_num_groups=resnet_groups,
-                    bias=True,
-                    upcast_softmax=True,
-                    only_cross_attention=only_cross_attention,
-                    cross_attention_norm=cross_attention_norm,
-                    processor=processor,
-                )
-            )
-        self.attentions = nn.ModuleList(attentions)
-        self.resnets = nn.ModuleList(resnets)
-
-        if add_upsample:
-            self.upsamplers = nn.ModuleList(
-                [
-                    ResnetBlock2D(
-                        in_channels=out_channels,
-                        out_channels=out_channels,
-                        temb_channels=temb_channels,
-                        eps=resnet_eps,
-                        groups=resnet_groups,
-                        dropout=dropout,
-                        time_embedding_norm=resnet_time_scale_shift,
-                        non_linearity=resnet_act_fn,
-                        output_scale_factor=output_scale_factor,
-                        pre_norm=resnet_pre_norm,
-                        skip_time_act=skip_time_act,
-                        up=True,
-                    )
-                ]
-            )
-        else:
-            self.upsamplers = None
-
-        self.gradient_checkpointing = False
-        self.resolution_idx = resolution_idx
-
-    def forward(
-        self,
-        hidden_states: torch.FloatTensor,
-        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
-        temb: Optional[torch.FloatTensor] = None,
-        encoder_hidden_states: Optional[torch.FloatTensor] = None,
-        upsample_size: Optional[int] = None,
-        attention_mask: Optional[torch.FloatTensor] = None,
-        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
-        encoder_attention_mask: Optional[torch.FloatTensor] = None,
-    ) -> torch.FloatTensor:
-        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
-
-        lora_scale = cross_attention_kwargs.get("scale", 1.0)
-        if attention_mask is None:
-            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
-            mask = None if encoder_hidden_states is None else encoder_attention_mask
-        else:
-            # when attention_mask is defined: we don't even check for encoder_attention_mask.
-            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
-            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
-            #       then we can simplify this whole if/else block to:
-            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
-            mask = attention_mask
-
-        for resnet, attn in zip(self.resnets, self.attentions):
-            # resnet
-            # pop res hidden states
-            res_hidden_states = res_hidden_states_tuple[-1]
-            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
-            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
-
-            if self.training and self.gradient_checkpointing:
-
-                def create_custom_forward(module, return_dict=None):
-                    def custom_forward(*inputs):
-                        if return_dict is not None:
-                            return module(*inputs, return_dict=return_dict)
-                        else:
-                            return module(*inputs)
-
-                    return custom_forward
-
-                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
-                hidden_states = attn(
-                    hidden_states,
-                    encoder_hidden_states=encoder_hidden_states,
-                    attention_mask=mask,
-                    **cross_attention_kwargs,
-                )
-            else:
-                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
-
-                hidden_states = attn(
-                    hidden_states,
-                    encoder_hidden_states=encoder_hidden_states,
-                    attention_mask=mask,
-                    **cross_attention_kwargs,
-                )
-
-        if self.upsamplers is not None:
-            for upsampler in self.upsamplers:
-                hidden_states = upsampler(hidden_states, temb, scale=lora_scale)
-
-        return hidden_states
-
-
-class KUpBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        out_channels: int,
-        temb_channels: int,
-        resolution_idx: int,
-        dropout: float = 0.0,
-        num_layers: int = 5,
-        resnet_eps: float = 1e-5,
-        resnet_act_fn: str = "gelu",
-        resnet_group_size: Optional[int] = 32,
-        add_upsample: bool = True,
-    ):
-        super().__init__()
-        resnets = []
-        k_in_channels = 2 * out_channels
-        k_out_channels = in_channels
-        num_layers = num_layers - 1
-
-        for i in range(num_layers):
-            in_channels = k_in_channels if i == 0 else out_channels
-            groups = in_channels // resnet_group_size
-            groups_out = out_channels // resnet_group_size
-
-            resnets.append(
-                ResnetBlock2D(
-                    in_channels=in_channels,
-                    out_channels=k_out_channels if (i == num_layers - 1) else out_channels,
-                    temb_channels=temb_channels,
-                    eps=resnet_eps,
-                    groups=groups,
-                    groups_out=groups_out,
-                    dropout=dropout,
-                    non_linearity=resnet_act_fn,
-                    time_embedding_norm="ada_group",
-                    conv_shortcut_bias=False,
-                )
-            )
-
-        self.resnets = nn.ModuleList(resnets)
-
-        if add_upsample:
-            self.upsamplers = nn.ModuleList([KUpsample2D()])
-        else:
-            self.upsamplers = None
-
-        self.gradient_checkpointing = False
-        self.resolution_idx = resolution_idx
-
-    def forward(
-        self,
-        hidden_states: torch.FloatTensor,
-        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
-        temb: Optional[torch.FloatTensor] = None,
-        upsample_size: Optional[int] = None,
-        scale: float = 1.0,
-    ) -> torch.FloatTensor:
-        res_hidden_states_tuple = res_hidden_states_tuple[-1]
-        if res_hidden_states_tuple is not None:
-            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)
-
-        for resnet in self.resnets:
-            if self.training and self.gradient_checkpointing:
-
-                def create_custom_forward(module):
-                    def custom_forward(*inputs):
-                        return module(*inputs)
-
-                    return custom_forward
-
-                if is_torch_version(">=", "1.11.0"):
-                    hidden_states = torch.utils.checkpoint.checkpoint(
-                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
-                    )
-                else:
-                    hidden_states = torch.utils.checkpoint.checkpoint(
-                        create_custom_forward(resnet), hidden_states, temb
-                    )
-            else:
-                hidden_states = resnet(hidden_states, temb, scale=scale)
-
-        if self.upsamplers is not None:
-            for upsampler in self.upsamplers:
-                hidden_states = upsampler(hidden_states)
-
-        return hidden_states
-
-
-class KCrossAttnUpBlock2D(nn.Module):
-    def __init__(
-        self,
-        in_channels: int,
-        out_channels: int,
-        temb_channels: int,
-        resolution_idx: int,
-        dropout: float = 0.0,
-        num_layers: int = 4,
-        resnet_eps: float = 1e-5,
-        resnet_act_fn: str = "gelu",
-        resnet_group_size: int = 32,
-        attention_head_dim: int = 1,  # attention dim_head
-        cross_attention_dim: int = 768,
-        add_upsample: bool = True,
-        upcast_attention: bool = False,
-    ):
-        super().__init__()
-        resnets = []
-        attentions = []
-
-        is_first_block = in_channels == out_channels == temb_channels
-        is_middle_block = in_channels != out_channels
-        add_self_attention = True if is_first_block else False
-
-        self.has_cross_attention = True
-        self.attention_head_dim = attention_head_dim
-
-        # in_channels, and out_channels for the block (k-unet)
-        k_in_channels = out_channels if is_first_block else 2 * out_channels
-        k_out_channels = in_channels
-
-        num_layers = num_layers - 1
-
-        for i in range(num_layers):
-            in_channels = k_in_channels if i == 0 else out_channels
-            groups = in_channels // resnet_group_size
-            groups_out = out_channels // resnet_group_size
-
-            if is_middle_block and (i == num_layers - 1):
-                conv_2d_out_channels = k_out_channels
-            else:
-                conv_2d_out_channels = None
-
-            resnets.append(
-                ResnetBlock2D(
-                    in_channels=in_channels,
-                    out_channels=out_channels,
-                    conv_2d_out_channels=conv_2d_out_channels,
-                    temb_channels=temb_channels,
-                    eps=resnet_eps,
-                    groups=groups,
-                    groups_out=groups_out,
-                    dropout=dropout,
-                    non_linearity=resnet_act_fn,
-                    time_embedding_norm="ada_group",
-                    conv_shortcut_bias=False,
-                )
-            )
-            attentions.append(
-                KAttentionBlock(
-                    k_out_channels if (i == num_layers - 1) else out_channels,
-                    k_out_channels // attention_head_dim
-                    if (i == num_layers - 1)
-                    else out_channels // attention_head_dim,
-                    attention_head_dim,
-                    cross_attention_dim=cross_attention_dim,
-                    temb_channels=temb_channels,
-                    attention_bias=True,
-                    add_self_attention=add_self_attention,
-                    cross_attention_norm="layer_norm",
-                    upcast_attention=upcast_attention,
-                )
-            )
-
-        self.resnets = nn.ModuleList(resnets)
-        self.attentions = nn.ModuleList(attentions)
-
-        if add_upsample:
-            self.upsamplers = nn.ModuleList([KUpsample2D()])
-        else:
-            self.upsamplers = None
-
-        self.gradient_checkpointing = False
-        self.resolution_idx = resolution_idx
-
-    def forward(
-        self,
-        hidden_states: torch.FloatTensor,
-        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
-        temb: Optional[torch.FloatTensor] = None,
-        encoder_hidden_states: Optional[torch.FloatTensor] = None,
-        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
-        upsample_size: Optional[int] = None,
-        attention_mask: Optional[torch.FloatTensor] = None,
-        encoder_attention_mask: Optional[torch.FloatTensor] = None,
-    ) -> torch.FloatTensor:
-        res_hidden_states_tuple = res_hidden_states_tuple[-1]
-        if res_hidden_states_tuple is not None:
-            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)
-
-        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
-        for resnet, attn in zip(self.resnets, self.attentions):
-            if self.training and self.gradient_checkpointing:
-
-                def create_custom_forward(module, return_dict=None):
-                    def custom_forward(*inputs):
-                        if return_dict is not None:
-                            return module(*inputs, return_dict=return_dict)
-                        else:
-                            return module(*inputs)
-
-                    return custom_forward
-
-                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
-                hidden_states = torch.utils.checkpoint.checkpoint(
-                    create_custom_forward(resnet),
-                    hidden_states,
-                    temb,
-                    **ckpt_kwargs,
-                )
-                hidden_states = attn(
-                    hidden_states,
-                    encoder_hidden_states=encoder_hidden_states,
-                    emb=temb,
-                    attention_mask=attention_mask,
-                    cross_attention_kwargs=cross_attention_kwargs,
-                    encoder_attention_mask=encoder_attention_mask,
-                )
-            else:
-                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
-                hidden_states = attn(
-                    hidden_states,
-                    encoder_hidden_states=encoder_hidden_states,
-                    emb=temb,
-                    attention_mask=attention_mask,
-                    cross_attention_kwargs=cross_attention_kwargs,
-                    encoder_attention_mask=encoder_attention_mask,
-                )
-
-        if self.upsamplers is not None:
-            for upsampler in self.upsamplers:
-                hidden_states = upsampler(hidden_states)
-
-        return hidden_states
-
-
-# can potentially later be renamed to `No-feed-forward` attention
-class KAttentionBlock(nn.Module):
-    r"""
-    A basic Transformer block.
-
-    Parameters:
-        dim (`int`): The number of channels in the input and output.
-        num_attention_heads (`int`): The number of heads to use for multi-head attention.
-        attention_head_dim (`int`): The number of channels in each head.
-        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
-        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
-        attention_bias (`bool`, *optional*, defaults to `False`):
-            Configure if the attention layers should contain a bias parameter.
-        upcast_attention (`bool`, *optional*, defaults to `False`):
-            Set to `True` to upcast the attention computation to `float32`.
-        temb_channels (`int`, *optional*, defaults to 768):
-            The number of channels in the token embedding.
-        add_self_attention (`bool`, *optional*, defaults to `False`):
-            Set to `True` to add self-attention to the block.
-        cross_attention_norm (`str`, *optional*, defaults to `None`):
-            The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`.
-        group_size (`int`, *optional*, defaults to 32):
-            The number of groups to separate the channels into for group normalization.
-    """
-
-    def __init__(
-        self,
-        dim: int,
-        num_attention_heads: int,
-        attention_head_dim: int,
-        dropout: float = 0.0,
-        cross_attention_dim: Optional[int] = None,
-        attention_bias: bool = False,
-        upcast_attention: bool = False,
-        temb_channels: int = 768,  # for ada_group_norm
-        add_self_attention: bool = False,
-        cross_attention_norm: Optional[str] = None,
-        group_size: int = 32,
-    ):
-        super().__init__()
-        self.add_self_attention = add_self_attention
-
-        # 1. Self-Attn
-        if add_self_attention:
-            self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
-            self.attn1 = Attention(
-                query_dim=dim,
-                heads=num_attention_heads,
-                dim_head=attention_head_dim,
-                dropout=dropout,
-                bias=attention_bias,
-                cross_attention_dim=None,
-                cross_attention_norm=None,
-            )
-
-        # 2. Cross-Attn
-        self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
-        self.attn2 = Attention(
-            query_dim=dim,
-            cross_attention_dim=cross_attention_dim,
-            heads=num_attention_heads,
-            dim_head=attention_head_dim,
-            dropout=dropout,
-            bias=attention_bias,
-            upcast_attention=upcast_attention,
-            cross_attention_norm=cross_attention_norm,
-        )
-
-    def _to_3d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor:
-        return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1)
-
-    def _to_4d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor:
-        return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight)
-
-    def forward(
-        self,
-        hidden_states: torch.FloatTensor,
-        encoder_hidden_states: Optional[torch.FloatTensor] = None,
-        # TODO: mark emb as non-optional (self.norm2 requires it).
-        #       requires assessing impact of change to positional param interface.
-        emb: Optional[torch.FloatTensor] = None,
-        attention_mask: Optional[torch.FloatTensor] = None,
-        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
-        encoder_attention_mask: Optional[torch.FloatTensor] = None,
-    ) -> torch.FloatTensor:
-        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
-
-        # 1. Self-Attention
-        if self.add_self_attention:
-            norm_hidden_states = self.norm1(hidden_states, emb)
-
-            height, weight = norm_hidden_states.shape[2:]
-            norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)
-
-            attn_output = self.attn1(
-                norm_hidden_states,
-                encoder_hidden_states=None,
-                attention_mask=attention_mask,
-                **cross_attention_kwargs,
-            )
-            attn_output = self._to_4d(attn_output, height, weight)
-
-            hidden_states = attn_output + hidden_states
-
-        # 2. Cross-Attention/None
-        norm_hidden_states = self.norm2(hidden_states, emb)
-
-        height, weight = norm_hidden_states.shape[2:]
-        norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)
-        attn_output = self.attn2(
-            norm_hidden_states,
-            encoder_hidden_states=encoder_hidden_states,
-            attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask,
-            **cross_attention_kwargs,
-        )
-        attn_output = self._to_4d(attn_output, height, weight)
-
-        hidden_states = attn_output + hidden_states
-
-        return hidden_states