atlury commited on
Commit
d52e973
Β·
verified Β·
1 Parent(s): be73ff2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +315 -313
app.py CHANGED
@@ -1,313 +1,315 @@
1
- import gradio as gr
2
- from PIL import Image
3
- from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
4
- from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
5
- from src.unet_hacked_tryon import UNet2DConditionModel
6
- from transformers import (
7
- CLIPImageProcessor,
8
- CLIPVisionModelWithProjection,
9
- CLIPTextModel,
10
- CLIPTextModelWithProjection,
11
- )
12
- from diffusers import DDPMScheduler,AutoencoderKL
13
- from typing import List
14
-
15
- import torch
16
- import os
17
- from transformers import AutoTokenizer
18
- import spaces
19
- import numpy as np
20
- from utils_mask import get_mask_location
21
- from torchvision import transforms
22
- import apply_net
23
- from preprocess.humanparsing.run_parsing import Parsing
24
- from preprocess.openpose.run_openpose import OpenPose
25
- from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
26
- from torchvision.transforms.functional import to_pil_image
27
-
28
-
29
- def pil_to_binary_mask(pil_image, threshold=0):
30
- np_image = np.array(pil_image)
31
- grayscale_image = Image.fromarray(np_image).convert("L")
32
- binary_mask = np.array(grayscale_image) > threshold
33
- mask = np.zeros(binary_mask.shape, dtype=np.uint8)
34
- for i in range(binary_mask.shape[0]):
35
- for j in range(binary_mask.shape[1]):
36
- if binary_mask[i,j] == True :
37
- mask[i,j] = 1
38
- mask = (mask*255).astype(np.uint8)
39
- output_mask = Image.fromarray(mask)
40
- return output_mask
41
-
42
-
43
- base_path = 'yisol/IDM-VTON'
44
- example_path = os.path.join(os.path.dirname(__file__), 'example')
45
-
46
- unet = UNet2DConditionModel.from_pretrained(
47
- base_path,
48
- subfolder="unet",
49
- torch_dtype=torch.float16,
50
- )
51
- unet.requires_grad_(False)
52
- tokenizer_one = AutoTokenizer.from_pretrained(
53
- base_path,
54
- subfolder="tokenizer",
55
- revision=None,
56
- use_fast=False,
57
- )
58
- tokenizer_two = AutoTokenizer.from_pretrained(
59
- base_path,
60
- subfolder="tokenizer_2",
61
- revision=None,
62
- use_fast=False,
63
- )
64
- noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
65
-
66
- text_encoder_one = CLIPTextModel.from_pretrained(
67
- base_path,
68
- subfolder="text_encoder",
69
- torch_dtype=torch.float16,
70
- )
71
- text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
72
- base_path,
73
- subfolder="text_encoder_2",
74
- torch_dtype=torch.float16,
75
- )
76
- image_encoder = CLIPVisionModelWithProjection.from_pretrained(
77
- base_path,
78
- subfolder="image_encoder",
79
- torch_dtype=torch.float16,
80
- )
81
- vae = AutoencoderKL.from_pretrained(base_path,
82
- subfolder="vae",
83
- torch_dtype=torch.float16,
84
- )
85
-
86
- # "stabilityai/stable-diffusion-xl-base-1.0",
87
- UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
88
- base_path,
89
- subfolder="unet_encoder",
90
- torch_dtype=torch.float16,
91
- )
92
-
93
- parsing_model = Parsing(0)
94
- openpose_model = OpenPose(0)
95
-
96
- UNet_Encoder.requires_grad_(False)
97
- image_encoder.requires_grad_(False)
98
- vae.requires_grad_(False)
99
- unet.requires_grad_(False)
100
- text_encoder_one.requires_grad_(False)
101
- text_encoder_two.requires_grad_(False)
102
- tensor_transfrom = transforms.Compose(
103
- [
104
- transforms.ToTensor(),
105
- transforms.Normalize([0.5], [0.5]),
106
- ]
107
- )
108
-
109
- pipe = TryonPipeline.from_pretrained(
110
- base_path,
111
- unet=unet,
112
- vae=vae,
113
- feature_extractor= CLIPImageProcessor(),
114
- text_encoder = text_encoder_one,
115
- text_encoder_2 = text_encoder_two,
116
- tokenizer = tokenizer_one,
117
- tokenizer_2 = tokenizer_two,
118
- scheduler = noise_scheduler,
119
- image_encoder=image_encoder,
120
- torch_dtype=torch.float16,
121
- )
122
- pipe.unet_encoder = UNet_Encoder
123
-
124
- @spaces.GPU
125
- def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed):
126
- device = "cuda"
127
-
128
- openpose_model.preprocessor.body_estimation.model.to(device)
129
- pipe.to(device)
130
- pipe.unet_encoder.to(device)
131
-
132
- garm_img= garm_img.convert("RGB").resize((768,1024))
133
- human_img_orig = dict["background"].convert("RGB")
134
-
135
- if is_checked_crop:
136
- width, height = human_img_orig.size
137
- target_width = int(min(width, height * (3 / 4)))
138
- target_height = int(min(height, width * (4 / 3)))
139
- left = (width - target_width) / 2
140
- top = (height - target_height) / 2
141
- right = (width + target_width) / 2
142
- bottom = (height + target_height) / 2
143
- cropped_img = human_img_orig.crop((left, top, right, bottom))
144
- crop_size = cropped_img.size
145
- human_img = cropped_img.resize((768,1024))
146
- else:
147
- human_img = human_img_orig.resize((768,1024))
148
-
149
-
150
- if is_checked:
151
- keypoints = openpose_model(human_img.resize((384,512)))
152
- model_parse, _ = parsing_model(human_img.resize((384,512)))
153
- mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
154
- mask = mask.resize((768,1024))
155
- else:
156
- mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
157
- # mask = transforms.ToTensor()(mask)
158
- # mask = mask.unsqueeze(0)
159
- mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
160
- mask_gray = to_pil_image((mask_gray+1.0)/2.0)
161
-
162
-
163
- human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
164
- human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
165
-
166
-
167
-
168
- args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
169
- # verbosity = getattr(args, "verbosity", None)
170
- pose_img = args.func(args,human_img_arg)
171
- pose_img = pose_img[:,:,::-1]
172
- pose_img = Image.fromarray(pose_img).resize((768,1024))
173
-
174
- with torch.no_grad():
175
- # Extract the images
176
- with torch.cuda.amp.autocast():
177
- with torch.no_grad():
178
- prompt = "model is wearing " + garment_des
179
- negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
180
- with torch.inference_mode():
181
- (
182
- prompt_embeds,
183
- negative_prompt_embeds,
184
- pooled_prompt_embeds,
185
- negative_pooled_prompt_embeds,
186
- ) = pipe.encode_prompt(
187
- prompt,
188
- num_images_per_prompt=1,
189
- do_classifier_free_guidance=True,
190
- negative_prompt=negative_prompt,
191
- )
192
-
193
- prompt = "a photo of " + garment_des
194
- negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
195
- if not isinstance(prompt, List):
196
- prompt = [prompt] * 1
197
- if not isinstance(negative_prompt, List):
198
- negative_prompt = [negative_prompt] * 1
199
- with torch.inference_mode():
200
- (
201
- prompt_embeds_c,
202
- _,
203
- _,
204
- _,
205
- ) = pipe.encode_prompt(
206
- prompt,
207
- num_images_per_prompt=1,
208
- do_classifier_free_guidance=False,
209
- negative_prompt=negative_prompt,
210
- )
211
-
212
-
213
-
214
- pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
215
- garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
216
- generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
217
- images = pipe(
218
- prompt_embeds=prompt_embeds.to(device,torch.float16),
219
- negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
220
- pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
221
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
222
- num_inference_steps=denoise_steps,
223
- generator=generator,
224
- strength = 1.0,
225
- pose_img = pose_img.to(device,torch.float16),
226
- text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
227
- cloth = garm_tensor.to(device,torch.float16),
228
- mask_image=mask,
229
- image=human_img,
230
- height=1024,
231
- width=768,
232
- ip_adapter_image = garm_img.resize((768,1024)),
233
- guidance_scale=2.0,
234
- )[0]
235
-
236
- if is_checked_crop:
237
- out_img = images[0].resize(crop_size)
238
- human_img_orig.paste(out_img, (int(left), int(top)))
239
- return human_img_orig, mask_gray
240
- else:
241
- return images[0], mask_gray
242
- # return images[0], mask_gray
243
-
244
- garm_list = os.listdir(os.path.join(example_path,"cloth"))
245
- garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
246
-
247
- human_list = os.listdir(os.path.join(example_path,"human"))
248
- human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
249
-
250
- human_ex_list = []
251
- for ex_human in human_list_path:
252
- ex_dict= {}
253
- ex_dict['background'] = ex_human
254
- ex_dict['layers'] = None
255
- ex_dict['composite'] = None
256
- human_ex_list.append(ex_dict)
257
-
258
- ##default human
259
-
260
-
261
- image_blocks = gr.Blocks().queue()
262
- with image_blocks as demo:
263
- gr.Markdown("## IDM-VTON πŸ‘•πŸ‘”πŸ‘š")
264
- gr.Markdown("Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)")
265
- with gr.Row():
266
- with gr.Column():
267
- imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
268
- with gr.Row():
269
- is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
270
- with gr.Row():
271
- is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False)
272
-
273
- example = gr.Examples(
274
- inputs=imgs,
275
- examples_per_page=10,
276
- examples=human_ex_list
277
- )
278
-
279
- with gr.Column():
280
- garm_img = gr.Image(label="Garment", sources='upload', type="pil")
281
- with gr.Row(elem_id="prompt-container"):
282
- with gr.Row():
283
- prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
284
- example = gr.Examples(
285
- inputs=garm_img,
286
- examples_per_page=8,
287
- examples=garm_list_path)
288
- with gr.Column():
289
- # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
290
- masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
291
- with gr.Column():
292
- # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
293
- image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=False)
294
-
295
-
296
-
297
-
298
- with gr.Column():
299
- try_button = gr.Button(value="Try-on")
300
- with gr.Accordion(label="Advanced Settings", open=False):
301
- with gr.Row():
302
- denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
303
- seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
304
-
305
-
306
-
307
- try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon')
308
-
309
-
310
-
311
-
312
- image_blocks.launch()
313
-
 
 
 
1
+ import spaces
2
+
3
+ import gradio as gr
4
+ from PIL import Image
5
+ from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
6
+ from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
7
+ from src.unet_hacked_tryon import UNet2DConditionModel
8
+ from transformers import (
9
+ CLIPImageProcessor,
10
+ CLIPVisionModelWithProjection,
11
+ CLIPTextModel,
12
+ CLIPTextModelWithProjection,
13
+ )
14
+ from diffusers import DDPMScheduler,AutoencoderKL
15
+ from typing import List
16
+
17
+ import torch
18
+ import os
19
+ from transformers import AutoTokenizer
20
+
21
+ import numpy as np
22
+ from utils_mask import get_mask_location
23
+ from torchvision import transforms
24
+ import apply_net
25
+ from preprocess.humanparsing.run_parsing import Parsing
26
+ from preprocess.openpose.run_openpose import OpenPose
27
+ from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
28
+ from torchvision.transforms.functional import to_pil_image
29
+
30
+
31
+ def pil_to_binary_mask(pil_image, threshold=0):
32
+ np_image = np.array(pil_image)
33
+ grayscale_image = Image.fromarray(np_image).convert("L")
34
+ binary_mask = np.array(grayscale_image) > threshold
35
+ mask = np.zeros(binary_mask.shape, dtype=np.uint8)
36
+ for i in range(binary_mask.shape[0]):
37
+ for j in range(binary_mask.shape[1]):
38
+ if binary_mask[i,j] == True :
39
+ mask[i,j] = 1
40
+ mask = (mask*255).astype(np.uint8)
41
+ output_mask = Image.fromarray(mask)
42
+ return output_mask
43
+
44
+
45
+ base_path = 'yisol/IDM-VTON'
46
+ example_path = os.path.join(os.path.dirname(__file__), 'example')
47
+
48
+ unet = UNet2DConditionModel.from_pretrained(
49
+ base_path,
50
+ subfolder="unet",
51
+ torch_dtype=torch.float16,
52
+ )
53
+ unet.requires_grad_(False)
54
+ tokenizer_one = AutoTokenizer.from_pretrained(
55
+ base_path,
56
+ subfolder="tokenizer",
57
+ revision=None,
58
+ use_fast=False,
59
+ )
60
+ tokenizer_two = AutoTokenizer.from_pretrained(
61
+ base_path,
62
+ subfolder="tokenizer_2",
63
+ revision=None,
64
+ use_fast=False,
65
+ )
66
+ noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
67
+
68
+ text_encoder_one = CLIPTextModel.from_pretrained(
69
+ base_path,
70
+ subfolder="text_encoder",
71
+ torch_dtype=torch.float16,
72
+ )
73
+ text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
74
+ base_path,
75
+ subfolder="text_encoder_2",
76
+ torch_dtype=torch.float16,
77
+ )
78
+ image_encoder = CLIPVisionModelWithProjection.from_pretrained(
79
+ base_path,
80
+ subfolder="image_encoder",
81
+ torch_dtype=torch.float16,
82
+ )
83
+ vae = AutoencoderKL.from_pretrained(base_path,
84
+ subfolder="vae",
85
+ torch_dtype=torch.float16,
86
+ )
87
+
88
+ # "stabilityai/stable-diffusion-xl-base-1.0",
89
+ UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
90
+ base_path,
91
+ subfolder="unet_encoder",
92
+ torch_dtype=torch.float16,
93
+ )
94
+
95
+ parsing_model = Parsing(0)
96
+ openpose_model = OpenPose(0)
97
+
98
+ UNet_Encoder.requires_grad_(False)
99
+ image_encoder.requires_grad_(False)
100
+ vae.requires_grad_(False)
101
+ unet.requires_grad_(False)
102
+ text_encoder_one.requires_grad_(False)
103
+ text_encoder_two.requires_grad_(False)
104
+ tensor_transfrom = transforms.Compose(
105
+ [
106
+ transforms.ToTensor(),
107
+ transforms.Normalize([0.5], [0.5]),
108
+ ]
109
+ )
110
+
111
+ pipe = TryonPipeline.from_pretrained(
112
+ base_path,
113
+ unet=unet,
114
+ vae=vae,
115
+ feature_extractor= CLIPImageProcessor(),
116
+ text_encoder = text_encoder_one,
117
+ text_encoder_2 = text_encoder_two,
118
+ tokenizer = tokenizer_one,
119
+ tokenizer_2 = tokenizer_two,
120
+ scheduler = noise_scheduler,
121
+ image_encoder=image_encoder,
122
+ torch_dtype=torch.float16,
123
+ )
124
+ pipe.unet_encoder = UNet_Encoder
125
+
126
+ @spaces.GPU
127
+ def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed):
128
+ device = "cuda"
129
+
130
+ openpose_model.preprocessor.body_estimation.model.to(device)
131
+ pipe.to(device)
132
+ pipe.unet_encoder.to(device)
133
+
134
+ garm_img= garm_img.convert("RGB").resize((768,1024))
135
+ human_img_orig = dict["background"].convert("RGB")
136
+
137
+ if is_checked_crop:
138
+ width, height = human_img_orig.size
139
+ target_width = int(min(width, height * (3 / 4)))
140
+ target_height = int(min(height, width * (4 / 3)))
141
+ left = (width - target_width) / 2
142
+ top = (height - target_height) / 2
143
+ right = (width + target_width) / 2
144
+ bottom = (height + target_height) / 2
145
+ cropped_img = human_img_orig.crop((left, top, right, bottom))
146
+ crop_size = cropped_img.size
147
+ human_img = cropped_img.resize((768,1024))
148
+ else:
149
+ human_img = human_img_orig.resize((768,1024))
150
+
151
+
152
+ if is_checked:
153
+ keypoints = openpose_model(human_img.resize((384,512)))
154
+ model_parse, _ = parsing_model(human_img.resize((384,512)))
155
+ mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
156
+ mask = mask.resize((768,1024))
157
+ else:
158
+ mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
159
+ # mask = transforms.ToTensor()(mask)
160
+ # mask = mask.unsqueeze(0)
161
+ mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
162
+ mask_gray = to_pil_image((mask_gray+1.0)/2.0)
163
+
164
+
165
+ human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
166
+ human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
167
+
168
+
169
+
170
+ args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
171
+ # verbosity = getattr(args, "verbosity", None)
172
+ pose_img = args.func(args,human_img_arg)
173
+ pose_img = pose_img[:,:,::-1]
174
+ pose_img = Image.fromarray(pose_img).resize((768,1024))
175
+
176
+ with torch.no_grad():
177
+ # Extract the images
178
+ with torch.cuda.amp.autocast():
179
+ with torch.no_grad():
180
+ prompt = "model is wearing " + garment_des
181
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
182
+ with torch.inference_mode():
183
+ (
184
+ prompt_embeds,
185
+ negative_prompt_embeds,
186
+ pooled_prompt_embeds,
187
+ negative_pooled_prompt_embeds,
188
+ ) = pipe.encode_prompt(
189
+ prompt,
190
+ num_images_per_prompt=1,
191
+ do_classifier_free_guidance=True,
192
+ negative_prompt=negative_prompt,
193
+ )
194
+
195
+ prompt = "a photo of " + garment_des
196
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
197
+ if not isinstance(prompt, List):
198
+ prompt = [prompt] * 1
199
+ if not isinstance(negative_prompt, List):
200
+ negative_prompt = [negative_prompt] * 1
201
+ with torch.inference_mode():
202
+ (
203
+ prompt_embeds_c,
204
+ _,
205
+ _,
206
+ _,
207
+ ) = pipe.encode_prompt(
208
+ prompt,
209
+ num_images_per_prompt=1,
210
+ do_classifier_free_guidance=False,
211
+ negative_prompt=negative_prompt,
212
+ )
213
+
214
+
215
+
216
+ pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
217
+ garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
218
+ generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
219
+ images = pipe(
220
+ prompt_embeds=prompt_embeds.to(device,torch.float16),
221
+ negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
222
+ pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
223
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
224
+ num_inference_steps=denoise_steps,
225
+ generator=generator,
226
+ strength = 1.0,
227
+ pose_img = pose_img.to(device,torch.float16),
228
+ text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
229
+ cloth = garm_tensor.to(device,torch.float16),
230
+ mask_image=mask,
231
+ image=human_img,
232
+ height=1024,
233
+ width=768,
234
+ ip_adapter_image = garm_img.resize((768,1024)),
235
+ guidance_scale=2.0,
236
+ )[0]
237
+
238
+ if is_checked_crop:
239
+ out_img = images[0].resize(crop_size)
240
+ human_img_orig.paste(out_img, (int(left), int(top)))
241
+ return human_img_orig, mask_gray
242
+ else:
243
+ return images[0], mask_gray
244
+ # return images[0], mask_gray
245
+
246
+ garm_list = os.listdir(os.path.join(example_path,"cloth"))
247
+ garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
248
+
249
+ human_list = os.listdir(os.path.join(example_path,"human"))
250
+ human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
251
+
252
+ human_ex_list = []
253
+ for ex_human in human_list_path:
254
+ ex_dict= {}
255
+ ex_dict['background'] = ex_human
256
+ ex_dict['layers'] = None
257
+ ex_dict['composite'] = None
258
+ human_ex_list.append(ex_dict)
259
+
260
+ ##default human
261
+
262
+
263
+ image_blocks = gr.Blocks().queue()
264
+ with image_blocks as demo:
265
+ gr.Markdown("## IDM-VTON πŸ‘•πŸ‘”πŸ‘š")
266
+ gr.Markdown("Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)")
267
+ with gr.Row():
268
+ with gr.Column():
269
+ imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
270
+ with gr.Row():
271
+ is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
272
+ with gr.Row():
273
+ is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False)
274
+
275
+ example = gr.Examples(
276
+ inputs=imgs,
277
+ examples_per_page=10,
278
+ examples=human_ex_list
279
+ )
280
+
281
+ with gr.Column():
282
+ garm_img = gr.Image(label="Garment", sources='upload', type="pil")
283
+ with gr.Row(elem_id="prompt-container"):
284
+ with gr.Row():
285
+ prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
286
+ example = gr.Examples(
287
+ inputs=garm_img,
288
+ examples_per_page=8,
289
+ examples=garm_list_path)
290
+ with gr.Column():
291
+ # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
292
+ masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
293
+ with gr.Column():
294
+ # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
295
+ image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=False)
296
+
297
+
298
+
299
+
300
+ with gr.Column():
301
+ try_button = gr.Button(value="Try-on")
302
+ with gr.Accordion(label="Advanced Settings", open=False):
303
+ with gr.Row():
304
+ denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
305
+ seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
306
+
307
+
308
+
309
+ try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon')
310
+
311
+
312
+
313
+
314
+ image_blocks.launch()
315
+