Spaces:
Running
Running
File size: 9,407 Bytes
e59bc30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
"""
Defines nudged elastic band (NEB) task
This module has been modified from MatCalc
https://github.com/materialsvirtuallab/matcalc/blob/main/src/matcalc/neb.py
https://github.com/materialsvirtuallab/matcalc/blob/main/LICENSE
BSD 3-Clause License
Copyright (c) 2023, Materials Virtual Lab
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
from __future__ import annotations
from pathlib import Path
from typing import TYPE_CHECKING, Any, Literal
from prefect import task
from prefect.cache_policies import INPUTS, TASK_SOURCE
from prefect.runtime import task_run
from prefect.states import State
from ase import Atoms
from ase.filters import * # type: ignore
from ase.mep.neb import NEB, NEBTools
from ase.optimize import * # type: ignore
from ase.optimize.optimize import Optimizer
from ase.utils.forcecurve import fit_images
from mlip_arena.models import MLIPEnum
from mlip_arena.tasks.optimize import run as OPT
from mlip_arena.tasks.utils import get_calculator
from pymatgen.io.ase import AseAtomsAdaptor
if TYPE_CHECKING:
pass
_valid_optimizers: dict[str, Optimizer] = {
"MDMin": MDMin,
"FIRE": FIRE,
"FIRE2": FIRE2,
"LBFGS": LBFGS,
"LBFGSLineSearch": LBFGSLineSearch,
"BFGS": BFGS,
# "BFGSLineSearch": BFGSLineSearch, # NEB does not support BFGSLineSearch
"QuasiNewton": QuasiNewton,
"GPMin": GPMin,
"CellAwareBFGS": CellAwareBFGS,
"ODE12r": ODE12r,
} # type: ignore
def _generate_task_run_name():
task_name = task_run.task_name
parameters = task_run.parameters
if "images" in parameters:
atoms = parameters["images"][0]
elif "start" in parameters:
atoms = parameters["start"]
else:
raise ValueError("No images or start atoms found in parameters")
calculator_name = parameters["calculator_name"]
return f"{task_name}: {atoms.get_chemical_formula()} - {calculator_name}"
@task(
name="NEB from images",
task_run_name=_generate_task_run_name,
cache_policy=TASK_SOURCE + INPUTS,
)
def run(
images: list[Atoms],
calculator_name: str | MLIPEnum,
calculator_kwargs: dict | None = None,
dispersion: str | None = None,
dispersion_kwargs: dict | None = None,
device: str | None = None,
optimizer: Optimizer | str = "MDMin", # type: ignore
optimizer_kwargs: dict | None = None,
criterion: dict | None = None,
interpolation: Literal["linear", "idpp"] = "idpp",
climb: bool = True,
traj_file: str | Path | None = None,
) -> dict[str, Any] | State:
"""Run the nudged elastic band (NEB) calculation.
Args:
images (list[Atoms]): The images.
calculator_name (str | MLIPEnum): The calculator name.
calculator_kwargs (dict, optional): The calculator kwargs. Defaults to None.
dispersion (str, optional): The dispersion. Defaults to None.
dispersion_kwargs (dict, optional): The dispersion kwargs. Defaults to None.
device (str, optional): The device. Defaults to None.
optimizer (Optimizer | str, optional): The optimizer. Defaults to "BFGSLineSearch".
optimizer_kwargs (dict, optional): The optimizer kwargs. Defaults to None.
criterion (dict, optional): The criterion. Defaults to None.
interpolation (Literal['linear', 'idpp'], optional): The interpolation method. Defaults to "idpp".
climb (bool, optional): Whether to use the climbing image. Defaults to True.
traj_file (str | Path, optional): The trajectory file. Defaults to None.
Returns:
dict[str, Any] | State: The energy barrier.
"""
calc = get_calculator(
calculator_name,
calculator_kwargs,
dispersion=dispersion,
dispersion_kwargs=dispersion_kwargs,
device=device,
)
for image in images:
assert isinstance(image, Atoms)
image.calc = calc
neb = NEB(images, climb=climb, allow_shared_calculator=True)
neb.interpolate(method=interpolation)
if isinstance(optimizer, str):
if optimizer not in _valid_optimizers:
raise ValueError(f"Invalid optimizer: {optimizer}")
optimizer = _valid_optimizers[optimizer]
optimizer_kwargs = optimizer_kwargs or {}
criterion = criterion or {}
optimizer_instance = optimizer(neb, trajectory=traj_file, **optimizer_kwargs) # type: ignore
optimizer_instance.run(**criterion)
neb_tool = NEBTools(neb.images)
return {
"barrier": neb_tool.get_barrier(),
"images": neb.images,
"forcefit": fit_images(neb.images),
}
@task(
name="NEB from end points",
task_run_name=_generate_task_run_name,
cache_policy=TASK_SOURCE + INPUTS,
)
def run_from_end_points(
start: Atoms,
end: Atoms,
n_images: int,
calculator_name: str | MLIPEnum,
calculator_kwargs: dict | None = None,
dispersion: str | None = None,
dispersion_kwargs: dict | None = None,
device: str | None = None,
optimizer: Optimizer | str = "BFGS", # type: ignore
optimizer_kwargs: dict | None = None,
criterion: dict | None = None,
relax_end_points: bool = True,
interpolation: Literal["linear", "idpp"] = "idpp",
climb: bool = True,
traj_file: str | Path | None = None,
) -> dict[str, Any] | State:
"""Run the nudged elastic band (NEB) calculation from end points.
Args:
start (Atoms): The start image.
end (Atoms): The end image.
n_images (int): The number of images.
calculator_name (str | MLIPEnum): The calculator name.
calculator_kwargs (dict, optional): The calculator kwargs. Defaults to None.
dispersion (str, optional): The dispersion. Defaults to None.
dispersion_kwargs (dict, optional): The dispersion kwargs. Defaults to None.
device (str, optional): The device. Defaults to None.
optimizer (Optimizer | str, optional): The optimizer. Defaults to "BFGSLineSearch".
optimizer_kwargs (dict, optional): The optimizer kwargs. Defaults to None.
criterion (dict, optional): The criterion. Defaults to None.
interpolation (Literal['linear', 'idpp'], optional): The interpolation method. Defaults to "idpp".
climb (bool, optional): Whether to use the climbing image. Defaults to True.
traj_file (str | Path, optional): The trajectory file. Defaults to None.
Returns:
dict[str, Any] | State: The energy barrier.
"""
if relax_end_points:
relax = OPT(
atoms=start.copy(),
calculator_name=calculator_name,
calculator_kwargs=calculator_kwargs,
dispersion=dispersion,
dispersion_kwargs=dispersion_kwargs,
device=device,
optimizer=optimizer,
optimizer_kwargs=optimizer_kwargs,
criterion=criterion,
)
start = relax["atoms"]
relax = OPT(
atoms=end.copy(),
calculator_name=calculator_name,
calculator_kwargs=calculator_kwargs,
dispersion=dispersion,
dispersion_kwargs=dispersion_kwargs,
device=device,
optimizer=optimizer,
optimizer_kwargs=optimizer_kwargs,
criterion=criterion,
)
end = relax["atoms"]
path = (
AseAtomsAdaptor()
.get_structure(start)
.interpolate(
AseAtomsAdaptor().get_structure(end),
nimages=n_images - 1,
interpolate_lattices=False,
pbc=False,
autosort_tol=0.5,
)
)
images = [s.to_ase_atoms() for s in path]
return run(
images,
calculator_name,
calculator_kwargs=calculator_kwargs,
dispersion=dispersion,
dispersion_kwargs=dispersion_kwargs,
device=device,
optimizer=optimizer,
optimizer_kwargs=optimizer_kwargs,
criterion=criterion,
interpolation=interpolation,
climb=climb,
traj_file=traj_file,
)
|