File size: 3,532 Bytes
a133fcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17c5f78
a133fcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17c5f78
a133fcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17c5f78
a133fcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17c5f78
a133fcb
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from __future__ import annotations

from pathlib import Path

import yaml
from ase import Atoms
from fairchem.core import OCPCalculator
from huggingface_hub import hf_hub_download

with open(Path(__file__).parents[1] / "registry.yaml", encoding="utf-8") as f:
    REGISTRY = yaml.safe_load(f)

class eqV2(OCPCalculator):
    def __init__(
        self,
        checkpoint=REGISTRY["eqV2(OMat)"]["checkpoint"],
        cache_dir=None,
        cpu=False, # TODO: cannot assign device
        seed=0,
        **kwargs,
    ) -> None:
        """
        Initialize an eqV2 calculator.

        Parameters
        ----------
        checkpoint : str, default="eqV2_86M_omat_mp_salex.pt"
            The name of the eqV2 checkpoint to use.
        local_cache : str, default="/tmp/ocp/"
            The directory to store the downloaded checkpoint.
        cpu : bool, default=False
            Whether to run the model on CPU or GPU.
        seed : int, default=0
            The random seed for the model.

        Other Parameters
        ----------------
        **kwargs
            Any additional keyword arguments are passed to the superclass.
        """

        # https://huggingface.co/fairchem/OMAT24/resolve/main/eqV2_86M_omat_mp_salex.pt

        checkpoint_path = hf_hub_download(
            "fairchem/OMAT24",
            filename=checkpoint,
            revision="bf92f9671cb9d5b5c77ecb4aa8b317ff10b882ce",
            cache_dir=cache_dir
        )
        kwargs.pop("device", None)
        super().__init__(
            checkpoint_path=checkpoint_path,
            cpu=cpu,
            seed=seed,
            **kwargs,
        )

class EquiformerV2(OCPCalculator):
    def __init__(
        self,
        checkpoint=REGISTRY["EquiformerV2(OC22)"]["checkpoint"],
        # TODO: cannot assign device
        local_cache="/tmp/ocp/",
        cpu=False,
        seed=0,
        **kwargs,
    ) -> None:
        kwargs.pop("device", None)
        super().__init__(
            model_name=checkpoint,
            local_cache=local_cache,
            cpu=cpu,
            seed=seed,
            **kwargs,
        )

    def calculate(self, atoms: Atoms, properties, system_changes) -> None:
        super().calculate(atoms, properties, system_changes)

        self.results.update(
            force=atoms.get_forces(),
        )


class EquiformerV2OC20(OCPCalculator):
    def __init__(
        self,
        checkpoint=REGISTRY["EquiformerV2(OC22)"]["checkpoint"],
        # TODO: cannot assign device
        local_cache="/tmp/ocp/",
        cpu=False,
        seed=0,
        **kwargs,
    ) -> None:
        kwargs.pop("device", None)
        super().__init__(
            model_name=checkpoint,
            local_cache=local_cache,
            cpu=cpu,
            seed=seed,
            **kwargs,
        )

class eSCN(OCPCalculator):
    def __init__(
        self,
        checkpoint="eSCN-L6-M3-Lay20-S2EF-OC20-All+MD",  # TODO: import from registry
        # TODO: cannot assign device
        local_cache="/tmp/ocp/",
        cpu=False,
        seed=0,
        **kwargs,
    ) -> None:
        kwargs.pop("device", None)
        super().__init__(
            model_name=checkpoint,
            local_cache=local_cache,
            cpu=cpu,
            seed=seed,
            **kwargs,
        )

    def calculate(self, atoms: Atoms, properties, system_changes) -> None:
        super().calculate(atoms, properties, system_changes)

        self.results.update(
            force=atoms.get_forces(),
        )