File size: 5,164 Bytes
020f369
 
 
18cbfe7
 
 
020f369
 
18cbfe7
020f369
 
140be5e
1fe249a
2e5c86d
 
1485b15
2e5c86d
 
 
 
 
020f369
49cde4e
18cbfe7
1485b15
 
 
020f369
49cde4e
 
 
5f78296
2e5c86d
020f369
49cde4e
 
 
 
020f369
49cde4e
 
020f369
49cde4e
 
 
 
020f369
49cde4e
020f369
49cde4e
e517f23
 
1485b15
 
 
 
 
 
49cde4e
18cbfe7
020f369
49cde4e
 
18cbfe7
020f369
18cbfe7
 
020f369
18cbfe7
020f369
18cbfe7
 
020f369
18cbfe7
 
1a72984
18cbfe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49cde4e
 
 
 
18cbfe7
49cde4e
 
 
 
 
 
 
18cbfe7
 
49cde4e
 
 
 
 
18cbfe7
49cde4e
18cbfe7
 
 
 
 
 
49cde4e
1485b15
18cbfe7
 
 
 
 
 
49cde4e
 
18cbfe7
49cde4e
1a72984
18cbfe7
 
 
 
 
49cde4e
1485b15
 
18cbfe7
 
49cde4e
18cbfe7
 
 
 
49cde4e
18cbfe7
 
 
49cde4e
18cbfe7
020f369
 
18cbfe7
2e5c86d
020f369
18cbfe7
 
1a72984
 
 
 
 
 
 
 
 
18cbfe7
1a72984
 
 
 
 
49cde4e
1a72984
 
 
 
 
2e5c86d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from pathlib import Path

import numpy as np
import pandas as pd
import plotly.colors as pcolors
import plotly.graph_objects as go
import streamlit as st
from ase.data import chemical_symbols
from plotly.subplots import make_subplots
from scipy.interpolate import CubicSpline

from mlip_arena.models import REGISTRY

st.markdown(
"""
# Homonuclear Diatomics

Homonuclear diatomics are molecules composed of two atoms of the same element.
The potential energy curves of homonuclear diatomics are the most fundamental interactions between atoms in quantum chemistry.
"""
)

st.markdown("### Methods")
container = st.container(border=True)
valid_models = [model for model, metadata in REGISTRY.items() if Path(__file__).stem in metadata.get("gpu-tasks", [])]
methods = container.multiselect("MLIPs", valid_models, ["MACE-MP(M)", "EquiformerV2(OC22)", "CHGNet", "eSCN(OC20)", "ALIGNN"])
dft_methods = container.multiselect("DFT Methods", ["GPAW"], [])

st.markdown("### Settings")
vis = st.container(border=True)
energy_plot = vis.checkbox("Show energy curves", value=True)
force_plot = vis.checkbox("Show force curves", value=False)
ncols = vis.select_slider("Number of columns", options=[1, 2, 3, 4], value=2)

# Get all attributes from pcolors.qualitative
all_attributes = dir(pcolors.qualitative)
color_palettes = {attr: getattr(pcolors.qualitative, attr) for attr in all_attributes if isinstance(getattr(pcolors.qualitative, attr), list)}
color_palettes.pop("__all__", None)

palette_names = list(color_palettes.keys())
palette_colors = list(color_palettes.values())

palette_name = vis.selectbox(
    "Color sequence",
    options=palette_names, index=22
)

color_sequence = color_palettes[palette_name] # type: ignore

DATA_DIR = Path("mlip_arena/tasks/diatomics")
if not methods:
    st.stop()
dfs = [pd.read_json(DATA_DIR / REGISTRY[method]["family"] /  "homonuclear-diatomics.json") for method in methods]

dfs.extend([pd.read_json(DATA_DIR / method.lower() /  "homonuclear-diatomics.json") for method in dft_methods])



df = pd.concat(dfs, ignore_index=True)
df.drop_duplicates(inplace=True, subset=["name", "method"])

method_color_mapping = {method: color_sequence[i % len(color_sequence)] for i, method in enumerate(df["method"].unique())}

for i, symbol in enumerate(chemical_symbols[1:]):

    if i % ncols == 0:
        cols = st.columns(ncols)

    rows = df[df["name"] == symbol + symbol]

    if rows.empty:
        continue

    fig = make_subplots(specs=[[{"secondary_y": True}]])

    elo, flo = float("inf"), float("inf")

    for j, method in enumerate(rows["method"].unique()):
        row = rows[rows["method"] == method].iloc[0]

        rs = np.array(row["R"])
        es = np.array(row["E"])
        fs = np.array(row["F"])

        rs = np.array(rs)
        ind = np.argsort(rs)
        es = np.array(es)
        fs = np.array(fs)

        rs = rs[ind]
        es = es[ind]
        if "GPAW" not in method:
            es = es - es[-1]
        else:
            pass

        if "GPAW" not in method:
            fs = fs[ind]

        if "GPAW" in method:
            xs = np.linspace(rs.min()*0.99, rs.max()*1.01, int(5e2))
        else:
            xs = rs

        if energy_plot:
            if "GPAW" in method:
                cs = CubicSpline(rs, es)
                ys = cs(xs)
            else:
                ys = es

            elo = min(elo, max(ys.min()*1.2, -15), -1)

            fig.add_trace(
                go.Scatter(
                    x=xs, y=ys,
                    mode="lines",
                    line=dict(
                        color=method_color_mapping[method],
                        width=3,
                    ),
                    name=method,
                ),
                secondary_y=False,
            )

        if force_plot and "GPAW" not in method:
            ys = fs

            flo = min(flo, max(ys.min()*1.2, -50))

            fig.add_trace(
                go.Scatter(
                    x=xs, y=ys,
                    mode="lines",
                    line=dict(
                        color=method_color_mapping[method],
                        width=2,
                        dash="dashdot",
                    ),
                    name=method,
                    showlegend=not energy_plot,
                ),
                secondary_y=True,
            )

    name = f"{symbol}-{symbol}"

    fig.update_layout(
        showlegend=True,
        title_text=f"{name}",
        title_x=0.5,
    )

    # Set x-axis title
    fig.update_xaxes(title_text="Distance [Å]")

    # Set y-axes titles
    if energy_plot:

        fig.update_layout(
            yaxis=dict(
                title=dict(text="Energy [eV]"),
                side="left",
                range=[elo, 2*(abs(elo))],
            )
        )

    if force_plot:

        fig.update_layout(
            yaxis2=dict(
                title=dict(text="Force [eV/Å]"),
                side="right",
                range=[flo, 1.5*abs(flo)],
                overlaying="y",
                tickmode="sync",
            ),
        )

    cols[i % ncols].plotly_chart(fig, use_container_width=True)