Spaces:
Running
Running
File size: 5,164 Bytes
020f369 18cbfe7 020f369 18cbfe7 020f369 140be5e 1fe249a 2e5c86d 1485b15 2e5c86d 020f369 49cde4e 18cbfe7 1485b15 020f369 49cde4e 5f78296 2e5c86d 020f369 49cde4e 020f369 49cde4e 020f369 49cde4e 020f369 49cde4e 020f369 49cde4e e517f23 1485b15 49cde4e 18cbfe7 020f369 49cde4e 18cbfe7 020f369 18cbfe7 020f369 18cbfe7 020f369 18cbfe7 020f369 18cbfe7 1a72984 18cbfe7 49cde4e 18cbfe7 49cde4e 18cbfe7 49cde4e 18cbfe7 49cde4e 18cbfe7 49cde4e 1485b15 18cbfe7 49cde4e 18cbfe7 49cde4e 1a72984 18cbfe7 49cde4e 1485b15 18cbfe7 49cde4e 18cbfe7 49cde4e 18cbfe7 49cde4e 18cbfe7 020f369 18cbfe7 2e5c86d 020f369 18cbfe7 1a72984 18cbfe7 1a72984 49cde4e 1a72984 2e5c86d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
from pathlib import Path
import numpy as np
import pandas as pd
import plotly.colors as pcolors
import plotly.graph_objects as go
import streamlit as st
from ase.data import chemical_symbols
from plotly.subplots import make_subplots
from scipy.interpolate import CubicSpline
from mlip_arena.models import REGISTRY
st.markdown(
"""
# Homonuclear Diatomics
Homonuclear diatomics are molecules composed of two atoms of the same element.
The potential energy curves of homonuclear diatomics are the most fundamental interactions between atoms in quantum chemistry.
"""
)
st.markdown("### Methods")
container = st.container(border=True)
valid_models = [model for model, metadata in REGISTRY.items() if Path(__file__).stem in metadata.get("gpu-tasks", [])]
methods = container.multiselect("MLIPs", valid_models, ["MACE-MP(M)", "EquiformerV2(OC22)", "CHGNet", "eSCN(OC20)", "ALIGNN"])
dft_methods = container.multiselect("DFT Methods", ["GPAW"], [])
st.markdown("### Settings")
vis = st.container(border=True)
energy_plot = vis.checkbox("Show energy curves", value=True)
force_plot = vis.checkbox("Show force curves", value=False)
ncols = vis.select_slider("Number of columns", options=[1, 2, 3, 4], value=2)
# Get all attributes from pcolors.qualitative
all_attributes = dir(pcolors.qualitative)
color_palettes = {attr: getattr(pcolors.qualitative, attr) for attr in all_attributes if isinstance(getattr(pcolors.qualitative, attr), list)}
color_palettes.pop("__all__", None)
palette_names = list(color_palettes.keys())
palette_colors = list(color_palettes.values())
palette_name = vis.selectbox(
"Color sequence",
options=palette_names, index=22
)
color_sequence = color_palettes[palette_name] # type: ignore
DATA_DIR = Path("mlip_arena/tasks/diatomics")
if not methods:
st.stop()
dfs = [pd.read_json(DATA_DIR / REGISTRY[method]["family"] / "homonuclear-diatomics.json") for method in methods]
dfs.extend([pd.read_json(DATA_DIR / method.lower() / "homonuclear-diatomics.json") for method in dft_methods])
df = pd.concat(dfs, ignore_index=True)
df.drop_duplicates(inplace=True, subset=["name", "method"])
method_color_mapping = {method: color_sequence[i % len(color_sequence)] for i, method in enumerate(df["method"].unique())}
for i, symbol in enumerate(chemical_symbols[1:]):
if i % ncols == 0:
cols = st.columns(ncols)
rows = df[df["name"] == symbol + symbol]
if rows.empty:
continue
fig = make_subplots(specs=[[{"secondary_y": True}]])
elo, flo = float("inf"), float("inf")
for j, method in enumerate(rows["method"].unique()):
row = rows[rows["method"] == method].iloc[0]
rs = np.array(row["R"])
es = np.array(row["E"])
fs = np.array(row["F"])
rs = np.array(rs)
ind = np.argsort(rs)
es = np.array(es)
fs = np.array(fs)
rs = rs[ind]
es = es[ind]
if "GPAW" not in method:
es = es - es[-1]
else:
pass
if "GPAW" not in method:
fs = fs[ind]
if "GPAW" in method:
xs = np.linspace(rs.min()*0.99, rs.max()*1.01, int(5e2))
else:
xs = rs
if energy_plot:
if "GPAW" in method:
cs = CubicSpline(rs, es)
ys = cs(xs)
else:
ys = es
elo = min(elo, max(ys.min()*1.2, -15), -1)
fig.add_trace(
go.Scatter(
x=xs, y=ys,
mode="lines",
line=dict(
color=method_color_mapping[method],
width=3,
),
name=method,
),
secondary_y=False,
)
if force_plot and "GPAW" not in method:
ys = fs
flo = min(flo, max(ys.min()*1.2, -50))
fig.add_trace(
go.Scatter(
x=xs, y=ys,
mode="lines",
line=dict(
color=method_color_mapping[method],
width=2,
dash="dashdot",
),
name=method,
showlegend=not energy_plot,
),
secondary_y=True,
)
name = f"{symbol}-{symbol}"
fig.update_layout(
showlegend=True,
title_text=f"{name}",
title_x=0.5,
)
# Set x-axis title
fig.update_xaxes(title_text="Distance [Å]")
# Set y-axes titles
if energy_plot:
fig.update_layout(
yaxis=dict(
title=dict(text="Energy [eV]"),
side="left",
range=[elo, 2*(abs(elo))],
)
)
if force_plot:
fig.update_layout(
yaxis2=dict(
title=dict(text="Force [eV/Å]"),
side="right",
range=[flo, 1.5*abs(flo)],
overlaying="y",
tickmode="sync",
),
)
cols[i % ncols].plotly_chart(fig, use_container_width=True)
|