Spaces:
Running
Running
File size: 8,795 Bytes
2100e49 623f47a 2100e49 189176d 2100e49 189176d 2100e49 189176d 2100e49 623f47a 189176d 623f47a 2100e49 189176d 2100e49 623f47a 2100e49 34fa973 2100e49 ffd09d9 623f47a 2100e49 34fa973 2100e49 623f47a 2100e49 34fa973 2100e49 189176d 2100e49 189176d 2100e49 34fa973 2100e49 189176d 2100e49 ffd09d9 623f47a 2100e49 189176d 2100e49 34fa973 623f47a 34fa973 aacb559 34fa973 aacb559 34fa973 aacb559 189176d 34fa973 aacb559 34fa973 189176d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
from pathlib import Path
import numpy as np
import pandas as pd
import plotly.colors as pcolors
import plotly.express as px
import plotly.graph_objects as go
import streamlit as st
from mlip_arena.models import REGISTRY as MODELS
DATA_DIR = Path("mlip_arena/tasks/combustion")
st.markdown("""
# Combustion
""")
st.markdown("### Methods")
container = st.container(border=True)
valid_models = [
model
for model, metadata in MODELS.items()
if Path(__file__).stem in metadata.get("gpu-tasks", [])
]
models = container.multiselect(
"MLIPs",
valid_models,
[
"MACE-MP(M)",
"CHGNet",
"M3GNet",
"SevenNet",
"ORB",
"EquiformerV2(OC22)",
"eSCN(OC20)",
],
)
st.markdown("### Settings")
vis = st.container(border=True)
# Get all attributes from pcolors.qualitative
all_attributes = dir(pcolors.qualitative)
color_palettes = {
attr: getattr(pcolors.qualitative, attr)
for attr in all_attributes
if isinstance(getattr(pcolors.qualitative, attr), list)
}
color_palettes.pop("__all__", None)
palette_names = list(color_palettes.keys())
palette_colors = list(color_palettes.values())
palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)
color_sequence = color_palettes[palette_name]
if not models:
st.stop()
@st.cache_data
def get_data(models):
families = [MODELS[str(model)]["family"] for model in models]
dfs = [
pd.read_json(DATA_DIR / family.lower() / "hydrogen.json") for family in families
]
df = pd.concat(dfs, ignore_index=True)
df.drop_duplicates(inplace=True, subset=["formula", "method"])
return df
df = get_data(models)
# families = [MODELS[str(model)]["family"] for model in models]
# dfs = [pd.read_json(DATA_DIR / family.lower() / "hydrogen.json") for family in families]
# df = pd.concat(dfs, ignore_index=True)
# df.drop_duplicates(inplace=True, subset=["formula", "method"])
method_color_mapping = {
method: color_sequence[i % len(color_sequence)]
for i, method in enumerate(df["method"].unique())
}
###
# Number of products
fig = go.Figure()
for method in df["method"].unique():
row = df[df["method"] == method].iloc[0]
fig.add_trace(
go.Scatter(
x=row["timestep"],
y=row["nproducts"],
mode="lines",
name=method,
line=dict(color=method_color_mapping[method]),
showlegend=True,
),
)
fig.update_layout(
title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)",
xaxis_title="Timestep",
yaxis_title="Number of water molecules",
)
st.plotly_chart(fig)
# tempearture
fig = go.Figure()
for method in df["method"].unique():
row = df[df["method"] == method].iloc[0]
fig.add_trace(
go.Scatter(
x=row["timestep"],
y=row["temperatures"],
mode="markers",
name=method,
line=dict(
color=method_color_mapping[method],
# width=1
),
marker=dict(color=method_color_mapping[method], size=3),
showlegend=True,
),
)
target_steps = df["target_steps"].iloc[0]
fig.add_trace(
go.Line(
x=[0, target_steps / 3, target_steps / 3 * 2, target_steps],
y=[300, 3000, 3000, 300],
mode="lines",
name="Target",
line=dict(dash="dash", color="white"),
showlegend=True,
),
)
fig.update_layout(
title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)",
xaxis_title="Timestep",
yaxis_title="Temperatures",
yaxis2=dict(
title="Product Percentage (%)",
overlaying="y",
side="right",
range=[0, 100],
tickmode="sync",
),
# template="plotly_dark",
)
st.plotly_chart(fig)
# Final reaction rate
fig = go.Figure()
df = df.sort_values("yield", ascending=True)
fig.add_trace(
go.Bar(
x=df["yield"] * 100,
y=df["method"],
opacity=0.75,
orientation="h",
marker=dict(color=[method_color_mapping[method] for method in df["method"]]),
text=[f"{y:.2f} %" for y in df["yield"] * 100],
)
)
fig.update_layout(
title="Reaction yield (2H2 + O2 -> 2H2O, 64 units)",
xaxis_title="Yield (%)",
yaxis_title="Method",
)
st.plotly_chart(fig)
# MD runtime speed
fig = go.Figure()
df = df.sort_values("steps_per_second", ascending=True)
fig.add_trace(
go.Bar(
x=df["steps_per_second"],
y=df["method"],
opacity=0.75,
orientation="h",
marker=dict(color=[method_color_mapping[method] for method in df["method"]]),
text=df["steps_per_second"].round(1),
)
)
fig.update_layout(
title="MD runtime speed (on single A100 GPU)",
xaxis_title="Steps per second",
yaxis_title="Method",
)
st.plotly_chart(fig)
# COM drift
st.markdown("""### Center of mass drift
The center of mass (COM) drift is a measure of the stability of the simulation. A well-behaved simulation should have a COM drift close to zero. The COM drift is calculated as the displacement of the COM of the system from the initial position.
""")
@st.cache_data
def get_com_drifts(df):
df_exploded = df.explode(["timestep", "com_drifts"]).reset_index(drop=True)
# Convert the 'com_drifts' column (which are arrays) into separate columns for x, y, and z components
df_exploded[["com_drift_x", "com_drift_y", "com_drift_z"]] = pd.DataFrame(
df_exploded["com_drifts"].tolist(), index=df_exploded.index
)
# Drop the original 'com_drifts' column
df_flat = df_exploded.drop(columns=["com_drifts"])
df_flat["total_com_drift"] = np.sqrt(
df_flat["com_drift_x"] ** 2 + df_flat["com_drift_y"] ** 2 + df_flat["com_drift_z"] ** 2
)
return df_flat
df_exploded = get_com_drifts(df)
if "play" not in st.session_state:
st.session_state.play = False
def toggle_playing():
st.session_state.play = not st.session_state.play
st.button(
"Play" if not st.session_state.play else "Pause",
type="primary" if not st.session_state.play else "secondary",
on_click=toggle_playing,
)
increment = df["target_steps"].max() // 200
if "time_range" not in st.session_state:
st.session_state.time_range = (0, increment)
@st.fragment(run_every=1e-3 if st.session_state.play else None)
def draw_com_drifts_plot():
if st.session_state.play:
start, end = st.session_state.time_range
end += increment
if end > df["target_steps"].max():
start = 0
end = 0
st.session_state.time_range = (start, end)
start_timestep, end_timestep = st.slider(
"Timestep",
min_value=0,
max_value=df["target_steps"].max(),
value=st.session_state.time_range,
key="time_range",
# on_change=check_range,
)
mask = (df_exploded["timestep"] >= start_timestep) & (
df_exploded["timestep"] <= end_timestep
)
df_filtered = df_exploded[mask]
df_filtered.sort_values(["method", "timestep"], inplace=True)
fig = px.line_3d(
data_frame=df_filtered,
x="com_drift_x",
y="com_drift_y",
z="com_drift_z",
labels={"com_drift_x": "Δx (Å)", "com_drift_y": "Δy (Å)", "com_drift_z": "Δz (Å)"},
category_orders={"method": df_exploded["method"].unique()},
color_discrete_sequence=[
method_color_mapping[method] for method in df_exploded["method"].unique()
],
color="method",
width=800,
height=800,
)
fig.update_layout(
scene=dict(
aspectmode="cube",
),
legend=dict(
orientation="v",
x=0.95,
xanchor="right",
y=1,
yanchor="top",
bgcolor="rgba(0, 0, 0, 0)",
),
)
fig.add_traces([
go.Scatter3d(
x=[0],
y=[0],
z=[0],
mode="markers",
marker=dict(size=2, color="white"),
name="Origin",
),
# add last point of each method and annotate the total drift
go.Scatter3d(
# df_filtered.groupby("method")["com_drift_x"].last(),
x=df_filtered.groupby("method")["com_drift_x"].last(),
y=df_filtered.groupby("method")["com_drift_y"].last(),
z=df_filtered.groupby("method")["com_drift_z"].last(),
mode="markers+text",
marker=dict(size=2, color="rgba(0, 0, 0, 128)"),
text=df_filtered.groupby("method")["total_com_drift"].last().round(3),
# size=5,
name="total drifts",
textposition="top center",
),
])
st.plotly_chart(fig)
draw_com_drifts_plot() |