File size: 3,259 Bytes
020f369
 
 
18cbfe7
 
 
020f369
 
18cbfe7
020f369
 
18cbfe7
020f369
 
 
18cbfe7
020f369
18cbfe7
 
 
 
020f369
18cbfe7
020f369
18cbfe7
 
020f369
18cbfe7
 
020f369
 
 
18cbfe7
020f369
18cbfe7
020f369
18cbfe7
 
020f369
 
18cbfe7
020f369
18cbfe7
 
020f369
18cbfe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
020f369
 
18cbfe7
 
020f369
18cbfe7
 
 
020f369
18cbfe7
 
020f369
18cbfe7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from pathlib import Path

import numpy as np
import pandas as pd
import plotly.colors as pcolors
import plotly.graph_objects as go
import streamlit as st
from ase.data import chemical_symbols
from plotly.subplots import make_subplots
from scipy.interpolate import CubicSpline

color_sequence = pcolors.qualitative.Plotly



st.markdown("# Homonuclear diatomics")

# button to toggle plots
container = st.container(border=True)
energy_plot = container.checkbox("Show energy curves", value=True)
force_plot = container.checkbox("Show force curves", value=False)

ncols = 2

DATA_DIR = Path("mlip_arena/tasks/diatomics")
mlips = ["MACE-MP", "CHGNet"]

dfs = [pd.read_json(DATA_DIR / mlip.lower() /  "homonuclear-diatomics.json") for mlip in mlips]
df = pd.concat(dfs, ignore_index=True)



df.drop_duplicates(inplace=True, subset=["name", "method"])

for i, symbol in enumerate(chemical_symbols[1:]):

    if i % ncols == 0:
        cols = st.columns(ncols)


    rows = df[df["name"] == symbol + symbol]

    if rows.empty:
        continue

    # fig = go.Figure()
    fig = make_subplots(specs=[[{"secondary_y": True}]])

    ylo = float("inf")

    for j, method in enumerate(rows["method"].unique()):
        row = rows[rows["method"] == method].iloc[0]

        rs = np.array(row["R"])
        es = np.array(row["E"])
        fs = np.array(row["F"])

        rs = np.array(rs)
        ind = np.argsort(rs)
        es = np.array(es)
        fs = np.array(fs)

        rs = rs[ind]
        es = es[ind]
        es = es - es[-1]
        fs = fs[ind]

        xs = np.linspace(rs.min()*0.99, rs.max()*1.01, int(5e2))

        if energy_plot:
            cs = CubicSpline(rs, es)
            ys = cs(xs)

            ylo = min(ylo, ys.min()*1.2, -1)

            fig.add_trace(
                go.Scatter(
                    x=xs, y=ys,
                    mode="lines",
                    line=dict(
                        color=color_sequence[j % len(color_sequence)],
                        width=2,
                    ),
                    name=method,
                ),
                secondary_y=False,
            )

        if force_plot:
            cs = CubicSpline(rs, fs)
            ys = cs(xs)

            fig.add_trace(
                go.Scatter(
                    x=xs, y=ys,
                    mode="lines",
                    line=dict(
                        color=color_sequence[j % len(color_sequence)],
                        width=1,
                        dash="dot",
                    ),
                    name=method,
                    showlegend=False if energy_plot else True,
                ),
                secondary_y=True,
            )


    fig.update_layout(
        showlegend=True,
        title_text=f"{symbol}-{symbol}",
        title_x=0.5,
        # yaxis_range=[ylo, 2*(abs(ylo))],
    )

    # Set x-axis title
    fig.update_xaxes(title_text="Bond length (Å)")

    # Set y-axes titles
    if energy_plot:
        fig.update_yaxes(title_text="Energy [eV]", secondary_y=False)

    if force_plot:
        fig.update_yaxes(title_text="Force [eV/Å]", secondary_y=True)

    # cols[i % ncols].title(f"{row['name']}")
    cols[i % ncols].plotly_chart(fig, use_container_width=True, height=250)