File size: 4,370 Bytes
1fe249a
 
 
 
 
e517f23
1fe249a
 
 
e517f23
 
 
 
1fe249a
2e5c86d
 
 
 
 
 
1fe249a
 
 
2e5c86d
e517f23
 
 
 
 
2e5c86d
 
 
 
 
e517f23
 
 
 
 
2e5c86d
e517f23
 
 
 
 
 
2e5c86d
e517f23
2e5c86d
 
 
 
e517f23
 
 
2e5c86d
 
 
 
1fe249a
 
e517f23
2e5c86d
 
 
e517f23
2e5c86d
 
e517f23
2e5c86d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e517f23
1fe249a
2e5c86d
1fe249a
2e5c86d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fe249a
 
2e5c86d
 
 
 
 
 
1fe249a
2e5c86d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from pathlib import Path

import numpy as np
import pandas as pd
import plotly.colors as pcolors
import plotly.express as px
import plotly.graph_objects as go
import streamlit as st

from mlip_arena.models import REGISTRY

DATA_DIR = Path("mlip_arena/tasks/stability")


st.markdown(
    """
# Stability

"""
)

st.markdown("### Methods")
container = st.container(border=True)
models = container.multiselect("MLIPs", REGISTRY.keys(), ["MACE-MP(M)", "CHGNet"])

st.markdown("### Settings")
vis = st.container(border=True)
# Get all attributes from pcolors.qualitative
all_attributes = dir(pcolors.qualitative)
color_palettes = {
    attr: getattr(pcolors.qualitative, attr)
    for attr in all_attributes
    if isinstance(getattr(pcolors.qualitative, attr), list)
}
color_palettes.pop("__all__", None)

palette_names = list(color_palettes.keys())
palette_colors = list(color_palettes.values())

palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)

color_sequence = color_palettes[palette_name]

if not models:
    st.stop()

families = [REGISTRY[str(model)]["family"] for model in models]

dfs = [
    pd.read_json(DATA_DIR / family.lower() / "chloride-salts.json")
    for family in families
]
df = pd.concat(dfs, ignore_index=True)
df.drop_duplicates(inplace=True, subset=["material_id", "formula", "method"])

method_color_mapping = {
    method: color_sequence[i % len(color_sequence)]
    for i, method in enumerate(df["method"].unique())
}


fig = px.scatter(
    df,
    x="natoms",
    y="steps_per_second",
    color="method",
    size="total_steps",
    hover_data=["material_id", "formula"],
    color_discrete_map=method_color_mapping,
    trendline="ols",
    trendline_options=dict(log_x=True),
    log_x=True,
    title="Inference Speed",
    labels={"steps_per_second": "Steps per second", "natoms": "Number of atoms"},
)
st.plotly_chart(fig)

###

fig = go.Figure()

# Determine the bin edges for the entire dataset to keep them consistent across groups
# bins = np.histogram_bin_edges(df['total_steps'], bins=10)

max_steps = df["total_steps"].max()

bins = np.append(np.arange(0, max_steps - 1, max_steps // 10), max_steps)
bin_labels = [f"{bins[i]}-{bins[i+1]}" for i in range(len(bins)-1)]

num_bins = len(bin_labels)
colormap = px.colors.sequential.Redor
indices = np.linspace(0, len(colormap) - 1, num_bins, dtype=int)
bin_colors = [colormap[i] for i in indices]

# Initialize a dictionary to hold the counts for each method and bin range
counts_per_method = {method: [0] * len(bin_labels) for method in df['method'].unique()}

# Populate the dictionary with counts
for method, group in df.groupby('method'):
    counts, _ = np.histogram(group['total_steps'], bins=bins)
    counts_per_method[method] = counts

# Create a figure
fig = go.Figure()

# Add a bar for each bin range across all methods
for i, bin_label in enumerate(bin_labels):
    for method, counts in counts_per_method.items():
        fig.add_trace(go.Bar(
            # name=method,  # This will be the legend entry
            x=[counts[i]],  # Count for this bin
            y=[method],  # Method as the y-axis category
            # name=bin_label,
            orientation='h',  # Horizontal bars
            marker=dict(
                color=bin_colors[i],
                line=dict(color='rgb(248, 248, 249)', width=1)
            ),
            text=bin_label,
            width=0.5
        ))

# Update the layout to stack the bars
fig.update_layout(
    barmode='stack',  # Stack the bars
    title="Total MD Steps",
    xaxis_title="Count",
    yaxis_title="Method",
    showlegend=False
)

# bins = np.linspace(0, 0.9, 10)

# for method, data in df.groupby("method"):

#     # print(method, data)
#     counts, bins = np.histogram(data['total_steps'])

#     bin_labels = [f"{int(bins[i])}-{int(bins[i+1])}" for i in range(len(bins)-1)]

#     # Create a horizontal bar chart
#     fig = go.Figure(go.Bar(
#         x=[counts[i]],  # Count for this bin
#         y=[method],  # Method as the y-axis category
#         # x=counts,  # Bar lengths
#         # y=bin_labels,  # Bin labels as y-tick labels
#         orientation='h'  # Horizontal bars
#     ))


# # Update layout for clarity
# fig.update_layout(
#     title="Histogram of Total Steps",
#     xaxis_title="Count",
#     yaxis_title="Total Steps Range"
# )

st.plotly_chart(fig)