Spaces:
Running
Running
File size: 7,975 Bytes
587c7e5 e80e29d 587c7e5 a787930 587c7e5 e80e29d 587c7e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
"""
Defines the tasks for computing the elastic tensor.
This module has been modified from MatCalc
https://github.com/materialsvirtuallab/matcalc/blob/main/src/matcalc/elasticity.py
https://github.com/materialsvirtuallab/matcalc/blob/main/LICENSE
BSD 3-Clause License
Copyright (c) 2023, Materials Virtual Lab
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
from __future__ import annotations
from typing import TYPE_CHECKING, Any
import numpy as np
from numpy.typing import ArrayLike
from prefect import task
from prefect.cache_policies import INPUTS, TASK_SOURCE
from prefect.runtime import task_run
from prefect.states import State
from ase import Atoms
from ase.optimize.optimize import Optimizer
from mlip_arena.models import MLIPEnum
from mlip_arena.tasks.optimize import run as OPT
from pymatgen.analysis.elasticity import DeformedStructureSet, ElasticTensor, Strain
from pymatgen.analysis.elasticity.elastic import get_strain_state_dict
from pymatgen.io.ase import AseAtomsAdaptor
if TYPE_CHECKING:
from ase.filters import Filter
def _generate_task_run_name():
task_name = task_run.task_name
parameters = task_run.parameters
atoms = parameters["atoms"]
calculator_name = parameters["calculator_name"]
return f"{task_name}: {atoms.get_chemical_formula()} - {calculator_name}"
@task(
name="Elasticity",
task_run_name=_generate_task_run_name,
cache_policy=TASK_SOURCE + INPUTS,
# cache_key_fn=task_input_hash,
)
def run(
atoms: Atoms,
calculator_name: str | MLIPEnum,
calculator_kwargs: dict | None = None,
dispersion: bool = False,
dispersion_kwargs: dict | None = None,
device: str | None = None,
optimizer: Optimizer | str = "BFGSLineSearch", # type: ignore
optimizer_kwargs: dict | None = None,
filter: Filter | str | None = "FrechetCell", # type: ignore
filter_kwargs: dict | None = None,
criterion: dict | None = None,
normal_strains: list[float] | np.ndarray | None = np.linspace(-0.01, 0.01, 4),
shear_strains: list[float] | np.ndarray | None = np.linspace(-0.06, 0.06, 4),
persist_opt: bool = True,
cache_opt: bool = False,
) -> dict[str, Any] | State:
"""
Compute the elastic tensor for the given structure and calculator.
Args:
atoms (Atoms): The input structure.
calculator_name (str | MLIPEnum): The calculator name.
calculator_kwargs (dict, optional): The calculator kwargs. Defaults to None.
device (str, optional): The device. Defaults to None.
optimizer (Optimizer | str, optional): The optimizer. Defaults to "BFGSLineSearch".
optimizer_kwargs (dict, optional): The optimizer kwargs. Defaults to None.
filter (Filter | str, optional): The filter. Defaults to "FrechetCell".
filter_kwargs (dict, optional): The filter kwargs. Defaults to None.
criterion (dict, optional): The criterion. Defaults to None.
normal_strains (list[float] | np.ndarray, optional): The normal strains. Defaults to np.linspace(-0.01, 0.01, 4).
shear_strains (list[float] | np.ndarray, optional): The shear strains. Defaults to np.linspace(-0.06, 0.06, 4).
concurrent (bool, optional): Whether to run concurrently. Defaults to True.
persist_opt (bool, optional): Whether to persist the optimizer results. Defaults to True.
cache_opt (bool, optional): Whether to cache the optimizer results. Defaults to True.
Returns:
dict[str, Any] | State: The elastic tensor.
"""
OPT_ = OPT.with_options(
refresh_cache=not cache_opt,
persist_result=persist_opt,
)
first_relax = OPT_(
atoms=atoms,
calculator_name=calculator_name,
calculator_kwargs=calculator_kwargs,
dispersion=dispersion,
dispersion_kwargs=dispersion_kwargs,
device=device,
optimizer=optimizer,
optimizer_kwargs=optimizer_kwargs,
filter=filter,
filter_kwargs=filter_kwargs,
criterion=criterion,
return_state=True,
)
if first_relax.is_failed():
return first_relax
result = first_relax.result(raise_on_failure=False)
assert isinstance(result, dict)
relaxed = result["atoms"]
if isinstance(normal_strains, np.ndarray):
normal_strains = normal_strains.tolist()
if isinstance(shear_strains, np.ndarray):
shear_strains = shear_strains.tolist()
assert isinstance(relaxed, Atoms)
assert isinstance(normal_strains, list)
assert isinstance(shear_strains, list)
structure = AseAtomsAdaptor.get_structure(relaxed) # type: ignore
deformed_structure_set = DeformedStructureSet(
structure,
normal_strains,
shear_strains,
)
stresses = []
for deformed_structure in deformed_structure_set:
atoms = deformed_structure.to_ase_atoms()
atoms.calc = relaxed.calc
stresses.append(atoms.get_stress(voigt=False))
strains = [
Strain.from_deformation(deformation)
for deformation in deformed_structure_set.deformations
]
fit = fit_elastic_tensor(
strains,
stresses,
eq_stress=relaxed.get_stress(voigt=False)
)
return {
"elastic_tensor": fit["elastic_tensor"],
"residuals_sum": fit["residuals_sum"],
}
@task
def fit_elastic_tensor(
strains: ArrayLike,
stresses: ArrayLike,
eq_stress: ArrayLike | None = None,
tolerance: float = 1e-7,
):
"""
Compute the elastic tensor from the given strains and stresses.
Args:
strains (ArrayLike): The strains.
stresses (ArrayLike): The stresses.
tolerance (float, optional): The tolerance. Defaults to 1e-7.
Returns:
ElasticTensor: The elastic tensor.
"""
strain_states = [tuple(ss) for ss in np.eye(6)]
ss_dict = get_strain_state_dict(
strains,
stresses,
eq_stress=eq_stress,
add_eq=True if eq_stress is not None else False,
)
c_ij = np.zeros((6, 6))
residuals_sum = 0.0
for ii in range(6):
strain = ss_dict[strain_states[ii]]["strains"]
stress = ss_dict[strain_states[ii]]["stresses"]
for jj in range(6):
fit = np.polyfit(strain[:, ii], stress[:, jj], 1, full=True)
c_ij[ii, jj] = fit[0][0]
residuals_sum += fit[1][0] if len(fit[1]) > 0 else 0.0
elastic_tensor = ElasticTensor.from_voigt(c_ij)
return {
"elastic_tensor": elastic_tensor.zeroed(tolerance),
"residuals_sum": residuals_sum,
}
|