File size: 3,157 Bytes
75ac94f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import functools
from pathlib import Path

import pandas as pd
from ase.db import connect
from dask.distributed import Client
from dask_jobqueue import SLURMCluster
from prefect import Task, flow, task
from prefect.client.schemas.objects import TaskRun
from prefect.states import State
from prefect_dask import DaskTaskRunner

from mlip_arena.models import REGISTRY, MLIPEnum
from mlip_arena.tasks.eos import run as EOS
from mlip_arena.tasks.optimize import run as OPT
from mlip_arena.tasks.utils import get_calculator


@task
def load_wbm_structures():
    """
    Load the WBM structures from a ASE DB file.
    """
    with connect("../wbm_structures.db") as db:
        for row in db.select():
            yield row.toatoms(add_additional_information=True)


def save_result(
    tsk: Task,
    run: TaskRun,
    state: State,
    model_name: str,
    id: str,
):
    result = run.state.result()

    assert isinstance(result, dict)

    result["method"] = model_name
    result["id"] = id
    result.pop("atoms", None)

    fpath = Path(f"{model_name}")
    fpath.mkdir(exist_ok=True)

    fpath = fpath / f"{result['id']}.pkl"

    df = pd.DataFrame([result])
    df.to_pickle(fpath)


@task
def eos_bulk(atoms, model):

    calculator = get_calculator(
        model
    )  # avoid sending entire model over prefect and select freer GPU

    result = OPT.with_options(
        refresh_cache=True,
    )(
        atoms,
        calculator,
        optimizer="FIRE",
        criterion=dict(
            fmax=0.1,
        ),
    )

    return EOS.with_options(
        refresh_cache=True,
        on_completion=[functools.partial(
            save_result,
            model_name=model.name,
            id=atoms.info["key_value_pairs"]["wbm_id"],
        )],
    )(
        atoms=result["atoms"],
        calculator=calculator,
        optimizer="FIRE",
        npoints=21,
        max_abs_strain=0.2,
        concurrent=False
    )


@flow
def run_all():
    futures = []
    for atoms in load_wbm_structures():
        for model in MLIPEnum:
            if "eos_bulk" not in REGISTRY[model.name].get("gpu-tasks", []):
                continue
            result = eos_bulk.submit(atoms, model)
            futures.append(result)
    return [f.result(raise_on_failure=False) for f in futures]


nodes_per_alloc = 1
gpus_per_alloc = 1
ntasks = 1

cluster_kwargs = dict(
    cores=4,
    memory="64 GB",
    shebang="#!/bin/bash",
    account="m3828",
    walltime="00:50:00",
    job_mem="0",
    job_script_prologue=[
        "source ~/.bashrc",
        "module load python",
        "source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena",
    ],
    job_directives_skip=["-n", "--cpus-per-task", "-J"],
    job_extra_directives=[
        "-J eos_bulk",
        "-q regular",
        f"-N {nodes_per_alloc}",
        "-C gpu",
        f"-G {gpus_per_alloc}",
        "--exclusive",
    ],
)

cluster = SLURMCluster(**cluster_kwargs)
print(cluster.job_script())
cluster.adapt(minimum_jobs=20, maximum_jobs=40)
client = Client(cluster)

run_all.with_options(
    task_runner=DaskTaskRunner(address=client.scheduler.address),
    log_prints=True,
)()