File size: 5,131 Bytes
75ac94f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from pathlib import Path

import numpy as np
import pandas as pd
from ase.db import connect
from dask.distributed import Client
from dask_jobqueue import SLURMCluster
from prefect import flow, task
from prefect.runtime import task_run
from prefect_dask import DaskTaskRunner
from prefect.cache_policies import INPUTS, TASK_SOURCE

from mlip_arena.models import REGISTRY, MLIPEnum
from mlip_arena.tasks.utils import get_calculator


@task
def load_wbm_structures():
    """
    Load the WBM structures from an ASE database file.
    
    Reads structures from 'wbm_structures.db' and yields them as ASE Atoms objects
    with additional metadata preserved from the database.
    
    Yields:
        ase.Atoms: Individual atomic structures from the WBM database with preserved
                  metadata in the .info dictionary.
    """
    with connect("../wbm_structures.db") as db:
        for row in db.select():
            yield row.toatoms(add_additional_information=True)

@task(
    name="E-V Scan",
    task_run_name=lambda: f"{task_run.task_name}: {task_run.parameters['atoms'].get_chemical_formula()} - {task_run.parameters['model'].name}",
    cache_policy=TASK_SOURCE + INPUTS,
)
def ev_scan(atoms, model):
    """
    Perform an energy-volume scan for a given model and atomic structure.
    
    This function applies uniaxial strain to the structure in all three dimensions,
    maintaining the fractional coordinates of atoms, and computes the energy at each
    deformation point using the specified model.
    
    Args:
        atoms: ASE atoms object containing the structure to analyze.
        model: MLIPEnum model to use for the energy calculations.
        
    Returns:
        dict: Results dictionary containing:
            - method (str): The name of the model used
            - id (str): The WBM ID of the structure
            - eos (dict): Energy of state data with:
                - volumes (list): Volume of the unit cell at each strain point
                - energies (list): Computed potential energy at each strain point
                
    Note:
        The strain range is fixed at ±20% with 21 evenly spaced points.
        Results are also saved as a JSON file in a directory named after the model.
    """
    calculator = get_calculator(
        model
    )  # avoid sending entire model over prefect and select freer GPU

    wbm_id = atoms.info["key_value_pairs"]["wbm_id"]

    c0 = atoms.get_cell()
    max_abs_strain = 0.2
    npoints = 21
    volumes = []
    energies = []
    for uniaxial_strain in np.linspace(-max_abs_strain, max_abs_strain, npoints):
        cloned = atoms.copy()
        scale_factor = uniaxial_strain + 1
        cloned.set_cell(c0 * scale_factor, scale_atoms=True)
        cloned.calc = calculator
        volumes.append(cloned.get_volume())
        energies.append(cloned.get_potential_energy())

    data = {
        "method": model.name,
        "id": wbm_id,
        "eos": {
            "volumes": volumes, "energies": energies
        }
    }

    fpath = Path(f"{model.name}") / f"{wbm_id}.json"
    fpath.parent.mkdir(exist_ok=True)

    df = pd.DataFrame([data])
    df.to_json(fpath)

    return df


@flow
def submit_tasks():
    """
    Create and submit energy-volume scan tasks for subsampled WBM structures and applicable models.
    
    This flow function:
    1. Loads all structures from the WBM database
    2. Iterates through available models in MLIPEnum
    3. Filters models based on their capability to handle the 'wbm_ev' GPU task
    4. Submits parallel ev_scan tasks for all valid (structure, model) combinations
    5. Collects and returns results from all tasks
    
    Returns:
        list: Results from all executed tasks (successful or failed)
    """
    futures = []
    for atoms in load_wbm_structures():
        for model in MLIPEnum:
            if "wbm_ev" not in REGISTRY[model.name].get("gpu-tasks", []):
                continue
            try:
                result = ev_scan.submit(atoms, model)
            except Exception as e:
                print(f"Failed to submit task for {model.name}: {e}")
                continue
            futures.append(result)
    return [f.result(raise_on_failure=False) for f in futures]


nodes_per_alloc = 1
gpus_per_alloc = 1
ntasks = 1

cluster_kwargs = dict(
    cores=1,
    memory="64 GB",
    processes=1,
    shebang="#!/bin/bash",
    account="m3828",
    walltime="00:30:00",
    # job_mem="0",
    job_script_prologue=[
        "source ~/.bashrc",
        "module load python",
        "source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena",
    ],
    job_directives_skip=["-n", "--cpus-per-task", "-J"],
    job_extra_directives=[
        "-J wbm_ev",
        "-q debug",
        f"-N {nodes_per_alloc}",
        "-C gpu",
        f"-G {gpus_per_alloc}",
        "--exclusive",
    ],
)

cluster = SLURMCluster(**cluster_kwargs)
print(cluster.job_script())
cluster.adapt(minimum_jobs=2, maximum_jobs=2)
client = Client(cluster)

submit_tasks.with_options(
    task_runner=DaskTaskRunner(address=client.scheduler.address),
    log_prints=True,
)()