File size: 8,808 Bytes
2100e49
 
623f47a
2100e49
 
189176d
2100e49
 
 
189176d
2100e49
 
 
 
 
 
 
 
 
 
189176d
 
 
 
 
2100e49
623f47a
189176d
 
 
 
 
 
 
 
 
 
 
623f47a
2100e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189176d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2100e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
623f47a
2100e49
34fa973
2100e49
 
 
 
 
 
 
ffd09d9
623f47a
2100e49
 
 
 
 
34fa973
2100e49
 
 
 
 
 
 
623f47a
2100e49
34fa973
2100e49
189176d
 
 
 
 
2100e49
 
 
 
 
 
 
189176d
2100e49
34fa973
2100e49
189176d
2100e49
 
 
 
 
ffd09d9
623f47a
2100e49
 
 
 
 
 
189176d
 
2100e49
 
 
 
34fa973
623f47a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34fa973
 
 
 
aacb559
 
34fa973
 
aacb559
 
34fa973
aacb559
 
189176d
34fa973
 
 
 
 
aacb559
 
34fa973
 
 
189176d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
368bb58
189176d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
from pathlib import Path

import numpy as np
import pandas as pd
import plotly.colors as pcolors
import plotly.express as px
import plotly.graph_objects as go
import streamlit as st

from mlip_arena.models import REGISTRY as MODELS

DATA_DIR = Path("mlip_arena/tasks/combustion")


st.markdown("""
# Combustion
""")

st.markdown("### Methods")
container = st.container(border=True)
valid_models = [
    model
    for model, metadata in MODELS.items()
    if Path(__file__).stem in metadata.get("gpu-tasks", [])
]

models = container.multiselect(
    "MLIPs",
    valid_models,
    [
        "MACE-MP(M)",
        "CHGNet",
        "M3GNet",
        "SevenNet",
        "ORB",
        "EquiformerV2(OC22)",
        "eSCN(OC20)",
    ],
)

st.markdown("### Settings")
vis = st.container(border=True)
# Get all attributes from pcolors.qualitative
all_attributes = dir(pcolors.qualitative)
color_palettes = {
    attr: getattr(pcolors.qualitative, attr)
    for attr in all_attributes
    if isinstance(getattr(pcolors.qualitative, attr), list)
}
color_palettes.pop("__all__", None)

palette_names = list(color_palettes.keys())
palette_colors = list(color_palettes.values())
palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)

color_sequence = color_palettes[palette_name]

if not models:
    st.stop()


@st.cache_data
def get_data(models):
    families = [MODELS[str(model)]["family"] for model in models]
    dfs = [
        pd.read_json(DATA_DIR / family.lower() / "hydrogen.json") for family in families
    ]
    df = pd.concat(dfs, ignore_index=True)
    df.drop_duplicates(inplace=True, subset=["formula", "method"])
    return df


df = get_data(models)

# families = [MODELS[str(model)]["family"] for model in models]

# dfs = [pd.read_json(DATA_DIR / family.lower() / "hydrogen.json") for family in families]
# df = pd.concat(dfs, ignore_index=True)
# df.drop_duplicates(inplace=True, subset=["formula", "method"])

method_color_mapping = {
    method: color_sequence[i % len(color_sequence)]
    for i, method in enumerate(df["method"].unique())
}

###

# Number of products
fig = go.Figure()

for method in df["method"].unique():
    row = df[df["method"] == method].iloc[0]
    fig.add_trace(
        go.Scatter(
            x=row["timestep"],
            y=row["nproducts"],
            mode="lines",
            name=method,
            line=dict(color=method_color_mapping[method]),
            showlegend=True,
        ),
    )

fig.update_layout(
    title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)",
    xaxis_title="Timestep",
    yaxis_title="Number of water molecules",
)

st.plotly_chart(fig)

# tempearture

fig = go.Figure()

for method in df["method"].unique():
    row = df[df["method"] == method].iloc[0]
    fig.add_trace(
        go.Scatter(
            x=row["timestep"],
            y=row["temperatures"],
            mode="markers",
            name=method,
            line=dict(
                color=method_color_mapping[method],
                # width=1
            ),
            marker=dict(color=method_color_mapping[method], size=3),
            showlegend=True,
        ),
    )

target_steps = df["target_steps"].iloc[0]
fig.add_trace(
    go.Line(
        x=[0, target_steps / 3, target_steps / 3 * 2, target_steps],
        y=[300, 3000, 3000, 300],
        mode="lines",
        name="Target",
        line=dict(dash="dash", color="white"),
        showlegend=True,
    ),
)

fig.update_layout(
    title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)",
    xaxis_title="Timestep",
    yaxis_title="Temperatures",
    yaxis2=dict(
        title="Product Percentage (%)",
        overlaying="y",
        side="right",
        range=[0, 100],
        tickmode="sync",
    ),
    # template="plotly_dark",
)

st.plotly_chart(fig)

# Final reaction rate

fig = go.Figure()

df = df.sort_values("yield", ascending=True)

fig.add_trace(
    go.Bar(
        x=df["yield"] * 100,
        y=df["method"],
        opacity=0.75,
        orientation="h",
        marker=dict(color=[method_color_mapping[method] for method in df["method"]]),
        text=[f"{y:.2f} %" for y in df["yield"] * 100],
    )
)

fig.update_layout(
    title="Reaction yield (2H2 + O2 -> 2H2O, 64 units)",
    xaxis_title="Yield (%)",
    yaxis_title="Method",
)

st.plotly_chart(fig)

# MD runtime speed

fig = go.Figure()

df = df.sort_values("steps_per_second", ascending=True)

fig.add_trace(
    go.Bar(
        x=df["steps_per_second"],
        y=df["method"],
        opacity=0.75,
        orientation="h",
        marker=dict(color=[method_color_mapping[method] for method in df["method"]]),
        text=df["steps_per_second"].round(1),
    )
)

fig.update_layout(
    title="MD runtime speed (on single A100 GPU)",
    xaxis_title="Steps per second",
    yaxis_title="Method",
)

st.plotly_chart(fig)

# COM drift

st.markdown("""### Center of mass drift

The center of mass (COM) drift is a measure of the stability of the simulation. A well-behaved simulation should have a COM drift close to zero. The COM drift is calculated as the displacement of the COM of the system from the initial position.
            """)


@st.cache_data
def get_com_drifts(df):
    df_exploded = df.explode(["timestep", "com_drifts"]).reset_index(drop=True)

    # Convert the 'com_drifts' column (which are arrays) into separate columns for x, y, and z components
    df_exploded[["com_drift_x", "com_drift_y", "com_drift_z"]] = pd.DataFrame(
        df_exploded["com_drifts"].tolist(), index=df_exploded.index
    )

    # Drop the original 'com_drifts' column
    df_flat = df_exploded.drop(columns=["com_drifts"])

    df_flat["total_com_drift"] = np.sqrt(
        df_flat["com_drift_x"] ** 2 + df_flat["com_drift_y"] ** 2 + df_flat["com_drift_z"] ** 2
    )

    return df_flat


df_exploded = get_com_drifts(df)

if "play" not in st.session_state:
    st.session_state.play = False


def toggle_playing():
    st.session_state.play = not st.session_state.play


st.button(
    "Play" if not st.session_state.play else "Pause",
    type="primary" if not st.session_state.play else "secondary",
    on_click=toggle_playing,
)

increment = df["target_steps"].max() // 200

if "time_range" not in st.session_state:
    st.session_state.time_range = (0, increment)


@st.experimental_fragment(run_every=1e-3 if st.session_state.play else None)
def draw_com_drifts_plot():
    if st.session_state.play:
        start, end = st.session_state.time_range

        end += increment

        if end > df["target_steps"].max():
            start = 0
            end = 0

        st.session_state.time_range = (start, end)

    start_timestep, end_timestep = st.slider(
        "Timestep",
        min_value=0,
        max_value=df["target_steps"].max(),
        value=st.session_state.time_range,
        key="time_range",
        # on_change=check_range,
    )

    mask = (df_exploded["timestep"] >= start_timestep) & (
        df_exploded["timestep"] <= end_timestep
    )
    df_filtered = df_exploded[mask]
    df_filtered.sort_values(["method", "timestep"], inplace=True)

    fig = px.line_3d(
        data_frame=df_filtered,
        x="com_drift_x",
        y="com_drift_y",
        z="com_drift_z",
        labels={"com_drift_x": "Δx (Å)", "com_drift_y": "Δy (Å)", "com_drift_z": "Δz (Å)"},
        category_orders={"method": df_exploded["method"].unique()},
        color_discrete_sequence=[
            method_color_mapping[method] for method in df_exploded["method"].unique()
        ],
        color="method",
        width=800,
        height=800,
    )

    fig.update_layout(
        scene=dict(
            aspectmode="cube",
        ),
        legend=dict(
            orientation="v",
            x=0.95,
            xanchor="right",
            y=1,
            yanchor="top",
            bgcolor="rgba(0, 0, 0, 0)",
        ),
    )
    fig.add_traces([
        go.Scatter3d(
            x=[0],
            y=[0],
            z=[0],
            mode="markers",
            marker=dict(size=2, color="white"),
            name="Origin",
        ),
        # add last point of each method and annotate the total drift
        go.Scatter3d(
            # df_filtered.groupby("method")["com_drift_x"].last(),
            x=df_filtered.groupby("method")["com_drift_x"].last(),
            y=df_filtered.groupby("method")["com_drift_y"].last(),
            z=df_filtered.groupby("method")["com_drift_z"].last(),
            mode="markers+text",
            marker=dict(size=2, color="rgba(0, 0, 0, 128)"),
            text=df_filtered.groupby("method")["total_com_drift"].last().round(3),
            # size=5,
            name="total drifts",
            textposition="top center",
        ),
    ])

    st.plotly_chart(fig)


draw_com_drifts_plot()